EBK NONLINEAR DYNAMICS AND CHAOS WITH S
EBK NONLINEAR DYNAMICS AND CHAOS WITH S
2nd Edition
ISBN: 9780429680151
Author: STROGATZ
Publisher: VST
bartleby

Videos

Question
Book Icon
Chapter 2.8, Problem 7E
Interpretation Introduction

Interpretation:

The function x(t1) = x(t0+Δt) is to be expanded as a Taylor series in time step Δt, up to order of (Δt)2. It is to be shown that the local error is |x(t1)-x1|C(Δt)2.

Concept Introduction:

The Taylor series is a series expansion of a function f(x) at a point in time step Δt

f(x) = f(a) + Δt f ' (a) +(Δt)22!f '' (a) +(Δt)33!f ''' (a) + 

From the given condition x = x0 at t = t0, we can substitute x˙ = f(x).

Euler method is a numerical approach for solving ordinary differential equation with a given initial value.

The general rule for Euler approximation is xn+1 = xn+ f (xn)Δt

Local Error = | x(t1) - x1|

Blurred answer
Students have asked these similar questions
Consider the problem of minimising the Euclidean distance from the point (-4,5) in the plane to the set of points (x, y) that have integer coordinates and satisfy the inequality: x2 y² + ≤1. 4 9 (a) Use an exhaustive search to solve this problem. (b) Use a local search method to solve this problem. First, define the search space and the neighbourhood. Then, attempt to find the minimum starting from the initial point (x, y) = (2,0). The neighbourhood of a point should contain at least two distinct points but must not encompass the entire feasible search space. Will your local search method find the global optimum?
Consider the relation ✓ on R² defined by u ≤ v u₁ + v₂+ 3u1 v² < u₂ + v³ + 3u²v₁ (u³ + v2 + 3u1v = u₂+ v³ + 3u²v₁ and u₂ < v2) u = v for any u, vЄR² with u = = (u1, u2), v = = (V1, V2). or 우우 or 1. Prove that the relation ✓ is translation invariant. Hint: Use the formula of (a + b)³ for a, b = R. 2. Is the relation ✓ scale invariant? Justify your answer. 3. Is the relation ✓ reflexive? Justify your answer. 4. Is the relation ✓ transitive? Justify your answer. 5. Is the relation ✓ antisymmetric? Justify your answer. 6. Is the relation ✓ total? Justify your answer. 7. Is the relation ✓ continuous at zero? Justify your answer.
Let X = [−1, 1] C R and consider the functions ₤1, f2 : X → R to be minimised, where f₁(x) = x + x² and f2(x) = x-x² for all x Є X. Solve the tradeoff model minøx µƒ₁(x)+ƒ2(x), for all values of µ ≥ 0. Show your working.
Knowledge Booster
Background pattern image
Advanced Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Power Series; Author: Professor Dave Explains;https://www.youtube.com/watch?v=OxVBT83x8oc;License: Standard YouTube License, CC-BY
Power Series & Intervals of Convergence; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=XHoRBh4hQNU;License: Standard YouTube License, CC-BY