Physics
5th Edition
ISBN: 9781260487008
Author: GIAMBATTISTA, Alan
Publisher: MCGRAW-HILL HIGHER EDUCATION
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 28, Problem 77P
To determine
The ground state energy of ultra-relativistic electron.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An evacuated tube uses a potential difference of ΔV = 0.38 kV to accelerate electrons, which then hit a copper plate and produce X-rays
Write an expression for the non-relativistic speed of these electrons v in terms of e, ΔV, and m, assuming the electrons start from rest.
Calculate the non-relativistic speed of these electrons v in m/s.
A linear particle accelerator using beta particles collides electrons with their anti-matter counterparts, positrons. The accelerated electron hits the stationary positron with a velocity of 19 x 106 m/s, causing the two particles to annihilate.If two gamma photons are created as a result, calculate the energy of each of these two photons, giving your answer in MeV (mega electron volts), accurate to 1 decimal place. Take the mass of the electron to be 5.486 x 10-4 u, or 9.109 x 10-31 kg.Note: Assume that the kinetic energy is also converted into the gamma rays, and is included in the two photons.
A linear particle accelerator using beta particles collides electrons with their anti-matter counterparts, positrons. The accelerated electron hits the stationary positron with a velocity of 29 x 106 m/s, causing the two particles to annihilate.If two gamma photons are created as a result, calculate the energy of each of these two photons, giving your answer in MeV (mega electron volts), accurate to 1 decimal place. Take the mass of the electron to be 5.486 x 10-4 u, or 9.109 x 10-31 kg.
Chapter 28 Solutions
Physics
Ch. 28.2 - Prob. 28.2CPCh. 28.2 - Prob. 28.1PPCh. 28.2 - Prob. 28.2PPCh. 28.4 - Prob. 28.4CPCh. 28.4 - Prob. 28.3PPCh. 28.6 - Prob. 28.6CPCh. 28.7 - Prob. 28.4PPCh. 28.9 - Prob. 28.5PPCh. 28.10 - Prob. 28.6PPCh. 28 - Prob. 1CQ
Ch. 28 - Prob. 2CQCh. 28 - Prob. 3CQCh. 28 - Prob. 4CQCh. 28 - Prob. 5CQCh. 28 - Prob. 6CQCh. 28 - Prob. 7CQCh. 28 - Prob. 8CQCh. 28 - Prob. 9CQCh. 28 - Prob. 10CQCh. 28 - Prob. 11CQCh. 28 - Prob. 12CQCh. 28 - Prob. 13CQCh. 28 - Prob. 14CQCh. 28 - Prob. 15CQCh. 28 - Prob. 16CQCh. 28 - Prob. 17CQCh. 28 - Prob. 18CQCh. 28 - Prob. 1MCQCh. 28 - Prob. 2MCQCh. 28 - Prob. 3MCQCh. 28 - Prob. 4MCQCh. 28 - Prob. 5MCQCh. 28 - Prob. 6MCQCh. 28 - Prob. 7MCQCh. 28 - Prob. 8MCQCh. 28 - Prob. 9MCQCh. 28 - Prob. 10MCQCh. 28 - Prob. 1PCh. 28 - Prob. 2PCh. 28 - Prob. 3PCh. 28 - Prob. 4PCh. 28 - Prob. 5PCh. 28 - Prob. 6PCh. 28 - Prob. 7PCh. 28 - Prob. 8PCh. 28 - Prob. 9PCh. 28 - Prob. 10PCh. 28 - Prob. 11PCh. 28 - Prob. 12PCh. 28 - Prob. 13PCh. 28 - Prob. 15PCh. 28 - Prob. 14PCh. 28 - Prob. 17PCh. 28 - Prob. 16PCh. 28 - Prob. 18PCh. 28 - Prob. 19PCh. 28 - Prob. 20PCh. 28 - Prob. 21PCh. 28 - Prob. 23PCh. 28 - Prob. 22PCh. 28 - Prob. 25PCh. 28 - Prob. 24PCh. 28 - Prob. 26PCh. 28 - Prob. 27PCh. 28 - Prob. 28PCh. 28 - Prob. 29PCh. 28 - Prob. 30PCh. 28 - Prob. 32PCh. 28 - Prob. 31PCh. 28 - Prob. 33PCh. 28 - Prob. 34PCh. 28 - Prob. 35PCh. 28 - Prob. 36PCh. 28 - Prob. 37PCh. 28 - Prob. 39PCh. 28 - Prob. 41PCh. 28 - Prob. 40PCh. 28 - Prob. 38PCh. 28 - Prob. 42PCh. 28 - Prob. 43PCh. 28 - Prob. 44PCh. 28 - Prob. 45PCh. 28 - Prob. 46PCh. 28 - Prob. 47PCh. 28 - Prob. 48PCh. 28 - Prob. 49PCh. 28 - Prob. 50PCh. 28 - Prob. 51PCh. 28 - Prob. 52PCh. 28 - Prob. 53PCh. 28 - Prob. 54PCh. 28 - Prob. 55PCh. 28 - Prob. 56PCh. 28 - Prob. 57PCh. 28 - Prob. 58PCh. 28 - Prob. 59PCh. 28 - Prob. 60PCh. 28 - Prob. 61PCh. 28 - Prob. 62PCh. 28 - Prob. 63PCh. 28 - Prob. 65PCh. 28 - Prob. 64PCh. 28 - Prob. 66PCh. 28 - Prob. 67PCh. 28 - Prob. 68PCh. 28 - Prob. 69PCh. 28 - Prob. 70PCh. 28 - Prob. 71PCh. 28 - Prob. 72PCh. 28 - Prob. 73PCh. 28 - Prob. 74PCh. 28 - Prob. 75PCh. 28 - Prob. 76PCh. 28 - Prob. 77PCh. 28 - Prob. 79PCh. 28 - Prob. 78PCh. 28 - Prob. 80PCh. 28 - Prob. 81PCh. 28 - Prob. 82PCh. 28 - Prob. 83PCh. 28 - Prob. 84P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (i) Does the speed of an electron have an upper limit? (a) yes, the speed of light c (b) yes, with another value (c) no (ii) Does the magnitude of an electrons momentum have an upper limit? (a) yes, mec (b) yes, with another value (c) no (iii) Does the electrons kinetic energy have an upper limit? (a) yes, mec2 (b) yes, 12mec2 (c) yes, with another value (d) noarrow_forwardAn enemy spacecraft moves away from the Earth at a speed of v = 0.800c (Fig. P9.19). A galactic patrol spacecraft pursues at a speed of u = 0.900c relative to the Earth. Observers on the Earth measure the patrol craft to be overtaking the enemy craft at a relative speed of 0.100c. With what speed is the patrol craft overtaking the enemy craft as measured by the patrol crafts crew? Figure. P9.19arrow_forwardThe muon is an unstable particle that spontaneously decays into an electron and two neutrinos. If the number of muons at t = 0 is N0, the number at time t is given by , where τ is the mean lifetime, equal to 2.2 μs. Suppose the muons move at a speed of 0.95c and there are 5.0 × 104 muons at t = 0. (a) What is the observed lifetime of the muons? (b) How many muons remain after traveling a distance of 3.0 km?arrow_forward
- Suppose the primed and laboratory observers want to measure the length of a rod that rests on the ground horizontally in the space between the helicopter and the tower (Fig. 39.8B). To derive the length transformation L = L (Eq. 39.5), we had to assume that the positions of the two ends were determined simultaneously. What happens to the length transformation equation if both observers measure the end below the helicopter at one time t1 and the other end at a later time t2?arrow_forwardAn observer in a coasting spacecraft moves toward a mirror at speed v relative to the reference frame labeled by S in Figure P26.46. The mirror is stationary with respect to S. A light pulse emitted by the spacecraft travels toward the mirror and is reflected back to the spacecraft. The spacecraft is a distance d from the mirror (as measured by observers in S) at the moment the light pulse leaves the spacecraft. What is the total travel time of the pulse as measured by observers in (a) the S frame and (b) the spacecraft? Figure P26.46arrow_forward(a) What is if v=0.250c ? (b) If v=0.500c ?arrow_forward
- The light from a heated atomic gas is shifted in frequency because of the random thermal motion of light-emitting atoms toward or away from an observer. Estimate the fractional Doppler shift (f/f0), assuming that light of frequency f0 is emitted in the rest frame of each atom, that the light-emitting atoms are iron atoms in a star at temperature 6000 K, and that the atoms are moving relative to an observer with the mean speed =8kBTm Must we use the relativistic Doppler shift formulas f=f01/c1/c for this calculation? Such thermal Doppler shifts are measurable and are used to determine stellar surface temperatures.arrow_forward(a) What is the effective accelerating potential for electrons at the Stanford Linear Accelerator, if =1.00105 for them? (b) What is their total energy (nearly the same as kinetic in this case) in GeV?arrow_forward(a) Suppose the speed of light were only 3000 m/s. A jet fighter moving toward a target on the ground at 800 m/s shoots bullets, each having a muzzle velocity of 1000 m/s. What are the bullets' velocity relative to the target? (b) If the speed of light was this small, would you observe relativistic effects in everyday life? Discuss.arrow_forward
- Plans for ail accelerator that produces a secondary beam of K mesons to scatter from nuclei, for the purpose of studying the strong force, call for them to have a kinetic energy of 500 MeV. (a) What would the relativistic quantity =11v2/c2be for these particles? (b) How long would their average lifetime be in the laboratory? (c) How far could they travel in this time?arrow_forward(a) All but the closest galaxies are receding from our own Milky Way Galaxy. If a galaxy 12.0x109ly away is receding from us at 0.900c, at what velocity relative to us must we send an exploratory probe to approach the other galaxy at 0.990c as measured from that galaxy? (b) How long will it take the probe to reach the other galaxy as measured from Earth? You may assume that the velocity of the other galaxy remains constant. (c) How long will it then take for a radio signal to be beamed back? (All of this is possible in principle, but not practical.)arrow_forwardAn interstellar space probe is launched from Earth. After a brief period of acceleration, it moves with a constant velocity, 70.0% of the speed of light. Its nuclear-powered batteries supply the energy to keep its data transmitter active continuously. The batteries have a lifetime of 15.0 years as measured in a rest frame. (a) How long do the batteries on the space probe last as measured by mission control on Earth? (b) How far is the probe from Earth when its batteries fail as measured by mission control? (c) How far is the probe from Earth as measured by its built-in trip odometer when its batteries fail? (d) For what total time after launch are data received from the probe by mission control? Note dial radio waves travel at the speed of light and fill the space between the probe and Earth at the time the battery fails.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning