EBK PHYSICS FOR SCIENTISTS AND ENGINEER
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
1st Edition
ISBN: 9780100546714
Author: Katz
Publisher: YUZU
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 28, Problem 58PQ

(a)

To determine

The power delivered by the power supply for each measurement in Table 28.4.

(a)

Expert Solution
Check Mark

Answer to Problem 58PQ

The power delivered by the power supply for each measurement in Table 28.4 is shown in Table 1.

Explanation of Solution

Power delivered by the power supply is the same as the power radiated by the bulb. The expression for power is given by,

  P=IΔV                                                                                                                     (I)

Here, P is the power, I is the current, and ΔV is the potential difference.

Conclusion:

The power delivered by the power supply for each measurement in Table 28.4 is shown in Table 1.

Table 1

Bulb A (carbon)Bulb B (tungsten)
ΔV(V)I(A)P(W)ΔV(V)I(A)P(W)
100.101.0100.212.1
210.275.7210.306.3
300.4112300.3811
410.5924410.4619
500.7537500.5126
600.9758600.5634
701.1782700.6344
801.36109800.6754
901.55140910.7165
   1010.7778
   1100.7987

Therefore, the power delivered by the power supply for each measurement in Table 28.4 is shown in Table 1.

(b)

To determine

The temperature of each filament for each entry in the table Table 28.4.

(b)

Expert Solution
Check Mark

Answer to Problem 58PQ

The temperature of each filament for each entry in the table Table 28.4 is shown in Table 2.

Explanation of Solution

Given that the emissivity of filaments is 1.

Write the Stefan-Boltzmann equation for the power.

  P=σεAT4                                                                                                                (II)

Here, σ is the Stefan-Boltzmann constant, ε is the emissivity, A is the surface area, and T is the temperature.

Write the expression for the surface area of the filament.

  A=πdl                                                                                                                   (III)

Here, d is the diameter of the filament, and l is its length.

Use equation (III) in (II) and solve for T.

  P=σεπdlT4T=(Pσεπdl)1/4                                                                                                         (IV)

Conclusion:

Substitute 0.045mm for d, 580mm for l, 5.67×108W/m2K4 for σ, and 1 for ε in equation (IV) to find the temperature T.

  T=(Pπ(5.67×108W/m2K4)(1)(0.045mm)(580mm))1/4=(P4.6×1012W/K4)1/4

The power corresponding to each measurement is calculated in part (a), so that the above equation can be utilized to compute the temperatures corresponding to each entry. Ii is tabulated in Table 2.

Table 2

Bulb A (carbon)Bulb B (tungsten)
ΔV(V)I(A)P(W)T(K)ΔV(V)I(A)P(W)T(K)
100.101.0680100.212.1820
210.275.71050210.306.31080
300.41121300300.38111300
410.59241500410.46191400
500.75371700500.51261500
600.97581900600.56341600
701.17822100700.63441800
801.361092200800.67541850
901.551402300910.71651900
    1010.77782000
    1100.79872100

Therefore, the temperature of each filament for each entry in the table Table 28.4 is shown in Table 2.

(c)

To determine

The plot of P as a function of T for each bulb on the same graph.

(c)

Expert Solution
Check Mark

Answer to Problem 58PQ

The plot of P as a function of T for each bulb on the same graph is shown in Figure 1.

Explanation of Solution

The computed values of power P and temperature T is shown in Table 2. The plot of plot of P as a function of T for each bulb on the same graph is shown in Figure 1.

EBK PHYSICS FOR SCIENTISTS AND ENGINEER, Chapter 28, Problem 58PQ

Conclusion:

Therefore, the plot of P as a function of T for each bulb on the same graph is shown in Figure 1.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Question B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…
SECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]
Page 2 SECTION A Answer ALL questions in Section A [Expect to use one single-sided A4 page for each Section-A sub question.] Question A1 SPA6308 (2024) Consider Minkowski spacetime in Cartesian coordinates th = (t, x, y, z), such that ds² = dt² + dx² + dy² + dz². (a) Consider the vector with components V" = (1,-1,0,0). Determine V and V. V. (b) Consider now the coordinate system x' (u, v, y, z) such that u =t-x, v=t+x. [2 marks] Write down the line element, the metric, the Christoffel symbols and the Riemann curvature tensor in the new coordinates. [See the Appendix of this document.] [5 marks] (c) Determine V", that is, write the object in question A1.a in the coordinate system x'. Verify explicitly that V. V is invariant under the coordinate transformation. Question A2 [5 marks] Suppose that A, is a covector field, and consider the object Fv=AAμ. (a) Show explicitly that F is a tensor, that is, show that it transforms appropriately under a coordinate transformation. [5 marks] (b)…

Chapter 28 Solutions

EBK PHYSICS FOR SCIENTISTS AND ENGINEER

Ch. 28 - Prob. 5PQCh. 28 - Prob. 6PQCh. 28 - Prob. 7PQCh. 28 - Prob. 8PQCh. 28 - Prob. 9PQCh. 28 - Prob. 10PQCh. 28 - Prob. 11PQCh. 28 - Prob. 12PQCh. 28 - Prob. 13PQCh. 28 - Prob. 14PQCh. 28 - The current in a wire varies with time (measured...Ch. 28 - Prob. 16PQCh. 28 - The amount of charge that flows through a copper...Ch. 28 - Prob. 18PQCh. 28 - Prob. 19PQCh. 28 - Prob. 20PQCh. 28 - Prob. 21PQCh. 28 - Prob. 22PQCh. 28 - A copper wire that is 2.00 mm in radius with...Ch. 28 - Prob. 24PQCh. 28 - Prob. 25PQCh. 28 - Prob. 26PQCh. 28 - What is the electric field in an aluminum wire if...Ch. 28 - Prob. 28PQCh. 28 - Prob. 29PQCh. 28 - Prob. 30PQCh. 28 - Prob. 31PQCh. 28 - Prob. 32PQCh. 28 - Two concentric, metal spherical shells of radii a...Ch. 28 - Prob. 34PQCh. 28 - Prob. 35PQCh. 28 - Prob. 36PQCh. 28 - Prob. 37PQCh. 28 - A lightbulb is connected to a variable power...Ch. 28 - Prob. 39PQCh. 28 - Prob. 40PQCh. 28 - Prob. 41PQCh. 28 - Prob. 42PQCh. 28 - Prob. 43PQCh. 28 - A Two wires with different resistivities, 1 and 2,...Ch. 28 - A copper and a gold wire are supposed to have the...Ch. 28 - Gold bricks are formed with the dimensions 7358134...Ch. 28 - Prob. 47PQCh. 28 - Prob. 48PQCh. 28 - Prob. 49PQCh. 28 - Prob. 50PQCh. 28 - Prob. 51PQCh. 28 - Prob. 52PQCh. 28 - Prob. 53PQCh. 28 - Prob. 54PQCh. 28 - A two-slice bread toaster consumes 850.0 W of...Ch. 28 - Prob. 56PQCh. 28 - Prob. 57PQCh. 28 - Prob. 58PQCh. 28 - Prob. 59PQCh. 28 - Prob. 60PQCh. 28 - Prob. 61PQCh. 28 - Prob. 62PQCh. 28 - Prob. 63PQCh. 28 - Prob. 64PQCh. 28 - Prob. 65PQCh. 28 - Prob. 66PQCh. 28 - Prob. 67PQCh. 28 - Prob. 68PQCh. 28 - Prob. 69PQCh. 28 - Prob. 70PQCh. 28 - Prob. 71PQCh. 28 - Prob. 72PQCh. 28 - Prob. 73PQCh. 28 - Prob. 74PQCh. 28 - Review When a metal rod is heated, its resistance...Ch. 28 - Prob. 76PQCh. 28 - Prob. 77PQCh. 28 - Prob. 78PQCh. 28 - Prob. 79PQCh. 28 - Prob. 80PQCh. 28 - Prob. 81PQCh. 28 - A conducting material with resistivity is shaped...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Inquiry into Physics
Physics
ISBN:9781337515863
Author:Ostdiek
Publisher:Cengage
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Heat Transfer: Crash Course Engineering #14; Author: CrashCourse;https://www.youtube.com/watch?v=YK7G6l_K6sA;License: Standard YouTube License, CC-BY