CONCEPTUAL INTEGRATED SCIENCE (PEARSON+
3rd Edition
ISBN: 2818440059223
Author: Hewitt
Publisher: PEARSON+
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 28, Problem 47TS
To determine
To find:
The approximate diameter of the solar system.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
You are making a scale model to visualize the relative sizes of the planets in our solar system. The scale of the model is: 1 cm = 2000 km. The radius of Saturn is 60,000 km. At what radius will Saturn appear on your scale model?
The value we have just calculated is the combined masses of Jupiter and Callisto! Their mass is in units of the Sun's Mass (MS) - we can convert this to
units which are more familiar to us like kilograms by multiplying this answer by the scale factor (1.99x1030 kg/1 MS):
(MJupiter + MCallisto) = ( MS) (1.99x1030 kg/1 Solar Mass) =
_______x_10___ kg
(I have already written the x 10 so you are reminded to write the exponenet of 10 in the scientific notation expression of your answer). Since you know from looking at pictures of Jupiter with its Galilean Satellites (look in your book at a picture if you have not already), that Callisto is much smaller than Jupiter - in fact it is less than 0.001 of Jupiter's size or mass, so the number we have just calculated for (MJupiter + MCallisto) is almost the same as MJupiter .
How much more massive is Jupiter than the Earth? (The mass of Earth is about 5.98 x 1024 kg)
Jupiter's moon Io has active volcanoes (in fact, it is the most volcanically active body in the solar system) that eject material as high as 500 kmkm (or even higher) above the surface. Io has a mass of 8.93×1022kg8.93×1022kg and a radius of 1821 kmkm.
Chapter 28 Solutions
CONCEPTUAL INTEGRATED SCIENCE (PEARSON+
Ch. 28 - How many known planets are in our solar system?Ch. 28 - What dwarf planet was downgraded from planetary...Ch. 28 - How are the outer planets different from the inner...Ch. 28 - Why does a nebula spin faster as it contracts?Ch. 28 - According to the nebula theory, did the planets...Ch. 28 - What happens to the amount of the Suns mass as it...Ch. 28 - What are sunspots?Ch. 28 - What is the solar wind?Ch. 28 - How does the rotation of the Sun differ from the...Ch. 28 - Prob. 10RCC
Ch. 28 - Why are the days on Mercury very hot and the...Ch. 28 - What two planets are evening or morning stars?Ch. 28 - Why is Earth called the blue planet?Ch. 28 - What gas makes up most of the Martian atmosphere?Ch. 28 - What evidence tells us that Mars was at one time...Ch. 28 - What surface feature do Jupiter and the Sun have...Ch. 28 - Which move faster Saturns inner rings or the...Ch. 28 - How tilted is Uranuss axis?Ch. 28 - Why is Neptune bluer than Uranus?Ch. 28 - Why doesnt the Moon have an atmosphere?Ch. 28 - Where is the Sun located when you view a full...Ch. 28 - Where are the Sun and the Moon located at the time...Ch. 28 - Why dont eclipses occur monthly, or nearly...Ch. 28 - How does the Moons rate of rotation about its own...Ch. 28 - Between the orbits of what two planets is the...Ch. 28 - What is the difference between a meteor and a...Ch. 28 - What is the Kuiper belt?Ch. 28 - What is the Oort cloud, and what is it noted for?Ch. 28 - Prob. 29RCCCh. 28 - What causes comet tails to point away from the...Ch. 28 - Prob. 31TISCh. 28 - Why does the evolution of life probably require...Ch. 28 - Rank these planets in order from longest to...Ch. 28 - Rank these planets in order of increasing number...Ch. 28 - Rank in order of increasing average density; a...Ch. 28 - Rank in order of increasing pressure at the centre...Ch. 28 - Rank in order of decreasing number of people who...Ch. 28 - Rank in order of increasing average distance from...Ch. 28 - Knowing that the speed of light is 300,000km/s,...Ch. 28 - How many days does sunlight take to travel the...Ch. 28 - Prob. 47TSCh. 28 - The nearest star to our Sun is Alpha Centauri,...Ch. 28 - If the Sun were the size of a beach ball, Earth...Ch. 28 - Prob. 50TECh. 28 - According to the nebular theory, what happens to a...Ch. 28 - Prob. 52TECh. 28 - When a contracting ball of hot gas spins into a...Ch. 28 - If the Earth didnt spin on its axis, but still...Ch. 28 - Which tends to be lager: a star or a nebula? Which...Ch. 28 - Prob. 56TECh. 28 - Prob. 57TECh. 28 - Does the Sun have a south and north magnetic pole?Ch. 28 - Explain why the radiation zone is more dense than...Ch. 28 - Prob. 60TECh. 28 - Explain how energy is transported outward through...Ch. 28 - Why does Venus, not Mercury, have the hottest...Ch. 28 - The greenhouse effect is very pronounced on Venus...Ch. 28 - What is the cause of winds on Mars and also on...Ch. 28 - Why is there so little wind on the surface of...Ch. 28 - If Venus were somehow transported into the...Ch. 28 - Mercury and Venus are never seen at night,...Ch. 28 - As evidenced in the photos of Figure 28.17, the...Ch. 28 - The exteriors of the outer planets are gaseous,...Ch. 28 - What is the major difference between the...Ch. 28 - What does Jupiter have in common with the Sun that...Ch. 28 - When it comes to celestial bodies, such as planets...Ch. 28 - Why are the seasons on Uranus different from the...Ch. 28 - Do all moons orbit in the same direction as the...Ch. 28 - Jupiters major moons keep getting stretched in...Ch. 28 - Giant tube worms living at the bottom of the ocean...Ch. 28 - When the Moon rises at sunset, its phase is always...Ch. 28 - Earth rotates much faster than Venus. How does the...Ch. 28 - Why are many craters evident on the surface of the...Ch. 28 - Why is there no atmosphere on the Moon? Defend...Ch. 28 - Is the fact that we see only one side of the Moon...Ch. 28 - Photograph a shows the moon partially lit by the...Ch. 28 - We always see the same face of the Moon because...Ch. 28 - If we never see the back side of the Moon, would...Ch. 28 - In what alignment of Sun, Moon, and Earth does a...Ch. 28 - In what alignment of Sun, Moon, and Earth does a...Ch. 28 - What does the Moon have in common with a compass...Ch. 28 - If you were on the moon and you looks up and saw a...Ch. 28 - If you were on the moon and you looks up and saw a...Ch. 28 - Earth takes 365.25 days to revolve around the Sun....Ch. 28 - Astronomers using land-based telescopes must...Ch. 28 - Nearly everybody has witnessed a lunar eclipse,...Ch. 28 - Because of the Earths shadow, a partially eclipsed...Ch. 28 - Which of the three orientations of the moon at...Ch. 28 - Assuming the above illustration depicts a sunset,...Ch. 28 - Is the sailboat seen in the above illustration...Ch. 28 - Where and how would the Moon be positioned if the...Ch. 28 - If an asteroid and a comet of equal mass were on a...Ch. 28 - In what sense is Pluto a potential comet?Ch. 28 - Smaller chunks of asteroids are sent hurling...Ch. 28 - Why are meteorites so much more easily found in...Ch. 28 - A meteor is visible only once, but a comet may be...Ch. 28 - What would be the consequence of a comets tail...Ch. 28 - Chances are about 50-50 that in any night sky...Ch. 28 - If the bulk of water on Earth didnt come from...Ch. 28 - Project what human civilization would be like if...Ch. 28 - What are the chances that microbial life-forms...Ch. 28 - Unmanned space probes are a very cost-effective...Ch. 28 - Prob. 1RATCh. 28 - The solar system is like an atom in that both a...Ch. 28 - The nebular theory is based on the observation...Ch. 28 - When a contracting hot ball of gas spins into a...Ch. 28 - Prob. 5RATCh. 28 - Compared to your weight on Earth, your weight on...Ch. 28 - When the Moon assumes its characteristically thin...Ch. 28 - When the Sun passes between the Moon and Earth, we...Ch. 28 - Asteroids orbit a the Moon. b Earth. c the Sun. d...Ch. 28 - With each pass of a comet about the Sun, the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Use Kepler's 3rd Law and the small angle approximation. a) An object is located in the solar system at a distance from the Sun equal to 41 AU's . What is the objects orbital period? b) An object seen in a telescope has an angular diameter equivalent to 41 (in units of arc seconds). What is its linear diameter if the object is 250 million km from you? Draw a labeled diagram of this situation.arrow_forwardEAn astronaut arrives on the planet Oceania and climbs to the top of a cliff overlooking the sea. The astronaut's eye is 100 m above the sea level and he observes that the horizon in all directions appears to be at angle of 5 mrad below the local horizontal. What is the radius of the planet Oceania at sea level? How far away is the horizon from the astronaut? 6000 km and 50 km 3600 km and 20 km 2000 km and 40 km 8000 km and 40 kmarrow_forwardYou decide to go on an interstellar mission to explore some of the newly discovered extrasolar planets orbiting the star ROTOR. Your spacecraft arrives in the new system, in which there are five planets. ROTOR is identical to the Sun (in terms of its size, mass, age and composition). From your observations of these planets, you collect the following data: Density Average Distance from star (AU] Planet Mass Radius Albedo Temp. [C] Surf. Press. MOI Rotation [Earth = 1] (Earth = 1] [g/cm³] [Atm.] Period (Hours] Factor SIEVER EUGENIA 4.0 0.001 2.0 0.1 5.0 1.0 0.3 20 0.8 N/A 3.0 0.2 N/A 0.3 0.4 0.35 20 10 500 1000 5.0 4.0 0.5 0.8 0.4 0.7 -50 MARLENE CRILE 1.0 1.0 3.0 8.0 1,5 0.0 0.50 0.50 0.25 150 0.4 JANUS 100 12 0.1 10 -80 0.2 200 Figure 1: А Rotor 850 890 900 Wavelength (nm) A Sun В C 860 900 910 Wavelength (nm) 2414 a asarrow_forward
- The International Space Station is about 90 meters across and about 380 kilometers away. One night it appears to be the same angular size as Jupiter. Jupiter is 143,000 km in size. Use S = r x a to figure out how far away Jupiter is in AU. Note 1 AU = 1.5 x 108 kmarrow_forwardQ1arrow_forwardNeptune is an average distance of 4.5×10^9 km from the Sun. - How many astronomical units (AU) is Neptune from the Sun? One AU is 1.50×10^8 km. - Estimate the length of the Neptunian year using your answer from part (a).arrow_forward
- Title If you observed the solar system from the nearest star (distance 1.3 parsecs), what would the... Description If you observed the solar system from the nearest star (distance 1.3 parsecs), what would the maximum angular separation be between Earth and the sun? Note that 1 pc is 2.1 105 AU. (Hint: Use the small-angle formula, Chapter 3.)arrow_forwardConsider the attached light curve for a transiting planet observed by the Kepler mission. If the host star is identical to the sun, what is the radius of this planet? Give your answer in terms of the radius of Jupiter. Brightness of Star Residual Flux 0.99 0.98 0.97 0.006 0.002 0.000 -8-881 -0.06 -0.04 -0.02 0.00 Time (days) → 0.02 0.04 0.06arrow_forwardA scientist has evidence that a newly discovered planet has a mass of 7.0\times 10^(24) kilograms and a volume of 3.5\times 10^(12) cubic kilometers. What is the planet's density?arrow_forward
- Earlier in this chapter, we modeled the solar system with Earth at a distance of about one city block from the Sun. If you were to make a model of the distances in the solar system to match your height, with the Sun at the top of your head and Pluto at your feet, which planet would be near your waist? How far down would the zone of the terrestrial planets reach?arrow_forwardIf you observed the Solar System from the vantage point of the nearest star, at a distance of 1.3 pc, what would the maximum angular separation be between Earth and the Sun? (Hint: Use the small-angle formula, Eq. 3-1.) (Note: 1 pc = 2.1 105 AU.)arrow_forwardImagine you grew up on Mars, whose semi-major axis is 1.5 AU. In observing the planets over your lifetime from the Martian surface, what is the largest angular separation you would see between the Earth and the Sun? Take the orbits of the Earth and Mars to be circular.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning