General Physics, 2nd Edition
General Physics, 2nd Edition
2nd Edition
ISBN: 9780471522782
Author: Morton M. Sternheim
Publisher: WILEY
Question
Book Icon
Chapter 28, Problem 46E

(a)

To determine

The Schrӧdinger equation for the particle.

(b)

To determine

The boundary conditions for the wave function.

(c)

To determine

Whether the given wave function is the satisfactory solution for the Schrӧdinger equation.

(d)

To determine

The energy corresponding to the give wave function.

Blurred answer
Students have asked these similar questions
A function of the form e^−gx2 is a solution of the Schrodinger equation for the harmonic oscillator, provided that g is chosen correctly. In this problem you will find the correct form of g. (a) Start by substituting Ψ = e^−gx2 into the left-hand side of the Schrodinger equation for the harmonic oscillator and evaluating the second derivative. (b) You will find that in general the resulting expression is not of the form constant × Ψ, implying that Ψ is not a solution to the equation. However, by choosing the value of g such that the terms in x^2 cancel one another, a solution is obtained. Find the required form of g and hence the corresponding energy. (c) Confirm that the function so obtained is indeed the ground state of the harmonic oscillator and has the correct energy.
Consider the Schrodinger equation for a one-dimensional linear harmonic oscillator: -(hbar2/2m) * d2ψ/dx2 + (kx2/2)*ψ(x) = Eψ(x) Substitute the wavefunction ψ(x) = e-(x^2)/(ξ^2) and find ξ and E required to satisfy the Schrodinger equation. [Hint: First calculate the second derivative of ψ(x), then substitute ψ(x) and ψ′′(x). After this substitution, there will be an overall factor of e-(x^2)/(ξ^2) on both sides of the equation which canbe an canceled out. Then, gather all terms which depend on x into one coefficient multiplying x2. This coefficient must be zero because the equation must be satisfied for any x, and equating it with zero yields the expression for ξ. Finally, the remaining x-independent part of the equation determines the eigenvalue for energy E associated with this solution.]
Consider the 1D time-independent Schrodinger equation ħ² ď² 2m dr² with the potential where to is a parameter. (a) Show that V(x) = +V(x)] = Ev v is a solution of the Schrodinger equation. ħ² mx² sech² 1 = A sech x xo (₁)
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax