WebAssign Printed Access Card for Serway/Vuille's College Physics, 11th Edition, Multi-Term
WebAssign Printed Access Card for Serway/Vuille's College Physics, 11th Edition, Multi-Term
11th Edition
ISBN: 9781337763486
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 28, Problem 29P

(a)

To determine

The wavelength of the positronium for the transition n=3 to n=2 .

(a)

Expert Solution
Check Mark

Answer to Problem 29P

The wavelength of the positronium for the transition n=3 to n=2 is 1313nm .

Explanation of Solution

Formula to calculate the wavelength is,

λ=1μZ2(36hc5k)

  • μ is the reduced mass,
  • Z is atomic number,
  • h is the Planck’s constant
  • c is the speed of light
  • k is the Coulomb’s constant

Expression the wavelength for the positronium is,

λp=1μpZp2(36hc5k)

  • μp is the reduced mass for positronium,
  • Zp is atomic number of positronium,

Expression the wavelength for the hydrogen is,

λH=1μHZH2(36hc5k)

  • μH is the reduced mass for hydrogen,
  • ZH is atomic number of hydrogen

Taking the ratio of the wavelength of the positronium to hydrogen,

λpλH=(1μpZp2)(36hc5k)(1μHZH2)(36hc5k)=μHZH2μpZp2

Substituting, me for μH , (me2) for μp , 1 for ZH , 1 for Zp , 656.3nm for λH to find λp ,

λp(656.3nm)=me(1)2(me2)(1)2λp=1313nm

Thus, the wavelength of the positronium is 1313nm .

Conclusion:

Therefore, the wavelength of the positronium is 1313nm .

(b)

To determine

The wavelength of the singly ionized helium for the transition n=3 to n=2 .

(b)

Expert Solution
Check Mark

Answer to Problem 29P

The wavelength of the singly ionized helium for the transition n=3 to n=2 is 164.1nm .

Explanation of Solution

Formula to calculate the wavelength is,

λ=1μZ2(36hc5k)

  • μ is the reduced mass,
  • Z is atomic number,
  • h is the Planck’s constant
  • c is the speed of light
  • k is the Coulomb’s constant

Expression the wavelength for the helium is,

λHe=1μHeZHe2(36hc5k)

  • μHe is the reduced mass for Helium
  • ZHe is atomic number of Helium

Expression the wavelength for the hydrogen is,

λH=1μHZH2(36hc5k)

  • μH is the reduced mass for hydrogen,
  • ZH is atomic number of hydrogen

Taking the ratio of the wavelength of the Helium to hydrogen,

λHeλH=(1μHeZHe2)(36hc5k)(1μHZH2)(36hc5k)=μHZH2μHeZHe2

Substituting, me for μH , me for μHe , 1 for ZH , 2 for Zp , 656.3nm for λH to find λHe ,

λHe(656.3nm)=me(1)2(me)(2)2λHe=164.1nm

Thus, the wavelength of the Helium is 164.1nm .

Conclusion:

Therefore, the wavelength of the Helium is 164.1nm

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Suppose there are two transformers between your house and the high-voltage transmission line that distributes the power. In addition, assume your house is the only one using electric power. At a substation the primary of a step-down transformer (turns ratio = 1:23) receives the voltage from the high-voltage transmission line. Because of your usage, a current of 51.1 mA exists in the primary of the transformer. The secondary is connected to the primary of another step- down transformer (turns ratio = 1:36) somewhere near your house, perhaps up on a telephone pole. The secondary of this transformer delivers a 240-V emf to your house. How much power is your house using? Remember that the current and voltage given in this problem are rms values.
In some places, insect "zappers," with their blue lights, are a familiar sight on a summer's night. These devices use a high voltage to electrocute insects. One such device uses an ac voltage of 3970 V, which is obtained from a standard 120-V outlet by means of a transformer. If the primary coil has 27 turns, how many turns are in the secondary coil? hel lp?
Hi,  Does Quantum physics theory means all branches for example quantum relativity, Quantum mechanics, Quantum field theory, and string theory? Can you explain each one of them? Best
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning