COLLEGE PHYSICS V1+WEBASSIGN MULTI-TERM
COLLEGE PHYSICS V1+WEBASSIGN MULTI-TERM
11th Edition
ISBN: 9780357683538
Author: SERWAY
Publisher: CENGAGE L
bartleby

Concept explainers

Question
Book Icon
Chapter 28, Problem 28P

(a)

To determine

The expression for the energy level of the sole remaining electron.

(a)

Expert Solution
Check Mark

Answer to Problem 28P

The expression for the energy level of the sole remaining electron is En=(122eV)n2.

Explanation of Solution

Formula to calculate the energy level is,

  En=Z2(13.6eV)n2

  • En is the nth energy level,
  • n is nth level
  • Z is the atomic number

Substitute 3 for Z to find En.

  En=(3)2(13.6eV)n2=(122eV)n2

Thus, expression for the energy level is (122eV)n2.

Conclusion:

Therefore, the expression for the energy level is (122eV)n2.

(b)

To determine

The energy for the level n=4.

(b)

Expert Solution
Check Mark

Answer to Problem 28P

The energy for the level n=4 is 7.63eV.

Explanation of Solution

Formula to calculate the energy level is,

  En=(122eV)n2

  • En is the nth energy level,
  • n is nth level

Substitute 4 for n to find En.

  E4=(122eV)(4)2=7.63eV

Thus, the energy for the level n=4 is 7.63eV.

Conclusion:

Therefore, the energy for the level n=4 is 7.63eV.

(c)

To determine

The energy for the level n=2.

(c)

Expert Solution
Check Mark

Answer to Problem 28P

The energy for the level n=2 is 30.5eV.

Explanation of Solution

Formula to calculate the energy level is,

  En=(122eV)n2

  • En is the nth energy level,
  • n is nth level

Substitute 2 for n to find En.

  E2=(122eV)(2)2=30.5eV

Thus, the energy for the level n=2 is 30.5eV.

Conclusion:

Therefore, the energy for the level n=2 is 30.5eV.

(d)

To determine

The energy of the photon for the transition from fourth level to second level.

(d)

Expert Solution
Check Mark

Answer to Problem 28P

the energy of the photon for the transition from fourth level to second level is 22.9eV or 3.66×1018J.

Explanation of Solution

Formula to calculate the energy difference is,

  Ephoton=(E4E2)

  • E2andE4 are the second and fourth level energy,
  • En is nth level energy

From unit conversion,

    1eV=1.6×1019J

Substitute (7.63eV) for E4, (30.5eV) for E2 to find Ephoton.

  Ephoton=[(7.63eV)(30.5eV)]=22.9eV=22.9eV×1.6×1019J1eV=3.66×1018J

Thus, the energy of the photon for the transition from fourth level to second level is 22.9eV or

3.66×1018J.

Conclusion:

Therefore, the energy of the photon for the transition from fourth level to second level is 22.9eV or 3.66×1018J.

(e)

To determine

The frequency and wavelength of the emitted photon.

(e)

Expert Solution
Check Mark

Answer to Problem 28P

The frequency and wavelength of the emitted photon is 5.52×1015Hz and 5.43×108m respectively.

Explanation of Solution

Formula to calculate the frequency of the photon is,

  f=Ephotonh

  • Ephoton is the photon energy
  • h is Planck’s constant

Substitute 3.66×1018J for Ephoton, 6.63×1034J-s for h to find f.

  f=(3.66×1018J)(6.63×1034J-s)=5.52×1015Hz

Formula to calculate the wavelength of the photon is,

  λ=cf

  • c is the speed of light
  • f is the frequency

Substitute 3×108m/s for c, 5.52×1015Hz for f to find λ.

  λ=3×108m/s5.52×1015Hz=5.43×108m

Thus, the frequency and wavelength of the emitted photon is 5.52×1015Hz and 5.43×108m respectively.

Conclusion:

Therefore, the frequency and wavelength of the emitted photon is 5.52×1015Hz and 5.43×108m respectively.

(f)

To determine

The wavelength belongs to in which spectrum.

(f)

Expert Solution
Check Mark

Answer to Problem 28P

The wavelength belongs to in which spectrum is deep ultraviolet region.

Explanation of Solution

The wavelength of the photon for the transition is 5.43×108m. So, this wavelength belongs to deep ultraviolet region.

Thus, this wavelength belongs to deep ultraviolet region.

Conclusion:

Therefore, the wavelength belongs to deep ultraviolet region

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The rectangular loop of wire shown in the figure (Figure 1) has a mass of 0.18 g per centimeter of length and is pivoted about side ab on a frictionless axis. The current in the wire is 8.5 A in the direction shown. Find the magnitude of the magnetic field parallel to the y-axis that will cause the loop to swing up until its plane makes an angle of 30.0 ∘ with the yz-plane. The answer is .028 T, I just need help understanding how to do it. Please show all steps.
A ray of light from an object you want to look at strikes a mirror so that the light ray makes a 32 degree angle relative to the normal line (a line perpendicular to the surface of the mirror at the point where the ray strikes the mirror). If you want to see the object in the mirror, what angle does your line of sight need to make relative to the normal line? Give your answer as the number of degrees.
Suppose you have a converging lens with a focal length of 65 cm. You hold this lens 120 cm away from a candle. How far behind the lens should you place a notecard if you want to form a clear image of the candle, on the card? Give your answer as the number of centimeters.
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Inquiry into Physics
Physics
ISBN:9781337515863
Author:Ostdiek
Publisher:Cengage