University Physics (14th Edition)
14th Edition
ISBN: 9780133969290
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 28, Problem 28.65P
CP Two long, parallel wires hang by 4.00-cm-long cords from a common axis (Fig. P28.65). The wires have a mass per unit length of 0.0125 kg/m and carry the same current in opposite directions. What is the current in each wire if the cords hang at an angle of 6.00° with the vertical?
Figure P28.65
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Two long parallel wires hang by 4.00 cm long cords. The wires have a mass per
unit length of 0.0125 kg/m and carry the same current in opposite directions. What is the
current in each wire if the cord hangs at an angle of 6.00⁰ with the vertical?
A proton enters a region of uniform magnetic feild (B) = (0.020 I)T and a uniform electric feild E . When the velocity of the proton is (3000k) m/s, it experiences an acceleration of (9.6x10^9 j) m/s². The magnitude E of the electric feild is equal to what? The options below have units V/m.
a. 160 V/m
b. 100 V/m
c. 60 V/m
d. 40 V/m
e. 0
Chapter 32, Problem 006
A capacitor with square plates of edge length L is being discharged by a current of 0.59 A. The figure is a head-on view of one of the plates from inside the capacitor. A dashed rectangular path is
shown. If L = 8.3 cm, W = 5.1 cm, and H = 2.4 cm, what is the value of
ф8-ds around the dashed path?
Chapter 28 Solutions
University Physics (14th Edition)
Ch. 28 - A topic of current interest in physics research is...Ch. 28 - Streams of charged particles emitted from the sun...Ch. 28 - The text discussed the magnetic field of an...Ch. 28 - Prob. Q28.4DQCh. 28 - Pairs of conductors carrying current into or out...Ch. 28 - Suppose you have three long, parallel wires...Ch. 28 - In deriving the force on one of the long,...Ch. 28 - Two concentric, coplanar, circular loops of wire...Ch. 28 - A current was sent through a helical coil spring....Ch. 28 - Prob. Q28.10DQ
Ch. 28 - Prob. Q28.11DQCh. 28 - Two very long, parallel wires carry equal currents...Ch. 28 - In the circuit shown in Fig. Q28.13, when switch S...Ch. 28 - A metal ring carries a current that causes a...Ch. 28 - Prob. Q28.15DQCh. 28 - Prob. Q28.16DQCh. 28 - If a magnet is suspended over a container of...Ch. 28 - Prob. Q28.18DQCh. 28 - Prob. Q28.19DQCh. 28 - A cylinder of iron is placed so that it is free to...Ch. 28 - Prob. 28.1ECh. 28 - Prob. 28.2ECh. 28 - An electron moves at 0.100c as shown in Fig....Ch. 28 - An alpha particle (charge +2e) and an electron...Ch. 28 - A 4.80-C charge is moving at a constant speed of...Ch. 28 - Positive point charges q = +8.00 C and q' = +3.00...Ch. 28 - A negative charge q = 3.60 106 C is located at...Ch. 28 - An electron and a proton are each moving at 735...Ch. 28 - A straight wire carries a 10.0-A current (Fig....Ch. 28 - A short current element dl = (0.500 mm) carries a...Ch. 28 - A long, straight wire lies along the z-axis and...Ch. 28 - Two parallel wires are 5.00 cm apart and carry...Ch. 28 - Prob. 28.13ECh. 28 - A square wire loop 10.0 cm on each side carries a...Ch. 28 - The Magnetic Field from a Lightning Bolt....Ch. 28 - A very long, straight horizontal wire carries a...Ch. 28 - Prob. 28.17ECh. 28 - BIO Bacteria Navigation. Certain bacteria (such as...Ch. 28 - (a) How large a current would a very long,...Ch. 28 - Two long, straight wires, one above the other, are...Ch. 28 - A long, straight wire lies along the y-axis and...Ch. 28 - BIO Transmission Lines and Health. Currents in dc...Ch. 28 - Two long, straight, parallel wires, 10.0 cm apart,...Ch. 28 - A rectangular loop with dimensions 4.20 cm by 9.50...Ch. 28 - Four, long, parallel power lines each carry 100-A...Ch. 28 - Four very long, current-carrying wires in the same...Ch. 28 - Two very long insulated wires perpendicular to...Ch. 28 - Three very long parallel wires each carry current...Ch. 28 - Prob. 28.29ECh. 28 - Prob. 28.30ECh. 28 - Lamp Cord Wires. The wires in a household lamp...Ch. 28 - Prob. 28.32ECh. 28 - BIO Currents in the Brain. The magnetic field...Ch. 28 - Calculate the magnitude and direction of the...Ch. 28 - Calculate the magnitude of the magnetic field at...Ch. 28 - A closely wound, circular coil with radius 2.40 cm...Ch. 28 - A single circular current loop 10.0 cm in diameter...Ch. 28 - A closely wound coil has a radius of 6.00 cm and...Ch. 28 - Two concentric circular loops of wire lie on a...Ch. 28 - Figure E28.40 shows, in cross section, several...Ch. 28 - A closed curve encircles several conductors. The...Ch. 28 - As a new electrical technician, you are designing...Ch. 28 - Prob. 28.43ECh. 28 - Prob. 28.44ECh. 28 - A solenoid that is 35 cm long and contains 450...Ch. 28 - A 15.0-cm-long solenoid with radius 0.750 cm is...Ch. 28 - A solenoid is designed to produce a magnetic field...Ch. 28 - A toroidal solenoid has an inner radius of 12.0 cm...Ch. 28 - A magnetic field of 37.2 T has been achieved at...Ch. 28 - An ideal toroidal solenoid (see Example 28.10) has...Ch. 28 - A wooden ring whose mean diameter is 14.0 cm is...Ch. 28 - A toroidal solenoid with 400 turns of wire and a...Ch. 28 - A long solenoid with 60 turns of wire per...Ch. 28 - The current in the windings of a toroidal solenoid...Ch. 28 - A pair of point charges, q = +8.00 C and q' = 5.00...Ch. 28 - At a particular instant, charge q1 = +4.80 106C...Ch. 28 - Two long, parallel transmission lines, 40.0 cm...Ch. 28 - A long, straight wire carries a current of 8.60 A....Ch. 28 - Prob. 28.59PCh. 28 - Prob. 28.60PCh. 28 - An electric bus operates by drawing direct current...Ch. 28 - Figure P28.62 shows an end view of two long,...Ch. 28 - Prob. 28.63PCh. 28 - The long, straight wire AB shown in Fig. P28.64...Ch. 28 - CP Two long, parallel wires hang by 4.00-cm-long...Ch. 28 - The wire semicircles shown in Fig. P28.66 have...Ch. 28 - CALC Helmholtz Coils. Figure P28.67 is a sectional...Ch. 28 - Prob. 28.68PCh. 28 - CALC A long, straight wire with a circular cross...Ch. 28 - CALC The wire shown in Fig. P28.70 is infinitely...Ch. 28 - Prob. 28.71PCh. 28 - Prob. 28.72PCh. 28 - An Infinite Current Sheet. Long, straight...Ch. 28 - Long, straight conductors with square cross...Ch. 28 - A long, straight, solid cylinder, oriented with...Ch. 28 - Prob. 28.76PCh. 28 - DATA You use a teslameter (a Hall-effect device)...Ch. 28 - DATA A pair of long, rigid metal rods, each of...Ch. 28 - CP Two long, straight conducting wires with linear...Ch. 28 - Prob. 28.80CPCh. 28 - BIO STUDYING MAGNETIC BACTERIA. Some types of...Ch. 28 - Prob. 28.82PPCh. 28 - The solenoid is removed from the enclosure and...
Additional Science Textbook Solutions
Find more solutions based on key concepts
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective
Choose the best answer to each of the following. Explain your reasoning. The luminosity of a quasar is generate...
The Cosmic Perspective Fundamentals (2nd Edition)
An object and its lens-produced real image are 2.4 m apart. If the lens has 55-cm focal length, what are the po...
Essential University Physics: Volume 2 (3rd Edition)
28. As the earth mates, what is the speed of (a) a physics student in Miami. Florida. at latitude 26°, and (b) ...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Choose the best answer to each of the following Explain your reasoning. In the Drake equation, what would flife...
Cosmic Perspective Fundamentals
A fireworks rocket is launched vertically upward at 40 m/s. At the peak of its trajectory, it explodes into two...
Essential University Physics: Volume 1 (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 6.0 A current flows through a 5.0 m thin and straightconductor wire. What is the magnitude of themagnetic field (in unit of nT) at a distance above4.0 m from the midpoint of the wire.(Take µ0 =4πx10−7 T.m/A )arrow_forwardA long straight wire in the z-axis carries a current of 6.0 A in the positive z direction, and a circular loop of 10 cm radius in the xy-plane also carries 1.0-A current as shown in the figure. Point P in the center of the ring is 25 cm from the z-axis. An electron is ejected from P at a velocity of 1.0 × 106 m / s in the negative x direction. What is the y component of the force acting on the electron? (e = 1.60 × 10-19 C, μ0 = 4π × 10-7 T m / A)arrow_forwardTwo infinitely long parallel wires are at a distance of 5.0 cm apart. If the wires carry a current of 7.7A, what is the exchanged force per meter between the wires ( in units of µN )? Select one: O A. 237.2 B. 278.7 С. 308.3 D. 189.7 O E. 136.4arrow_forward
- Two infinitely long parallel wires are at a distance of 5.0 cm apart. If the wires carry a current of 6.7A, what is the exchanged force per meter between the wires ( in units of µN )? Select one: OA. 179.6 OB. 211.0 OC. 143.6 OD. 103.2 OE. 233.4 Next paarrow_forwardIn Figure P19.2, assume in each case the velocity vector shownis replaced with a wire carrying a current in the direction ofthe velocity vector. For each case, find the direction of themagnetic force acting on the wire.arrow_forwardBiot-savart lawarrow_forward
- A loop of wire moves with a velocity of 3.0 m/sm/s through a magnetic field whose strength decreases with distance at a rate of 5.0 μT/m�T/m. If the loop has an area of 0.75 m2m2 and internal resistance of 0.50 ΩΩ, what is the current in the wire?arrow_forwardA portion of a long, cylindrical coaxial cable is shown in the figure below. An electrical current I = 3.0 amps flows down the center conductor, and this same current is returned in the outer conductor. Assume the current is distributed uniformly over the cross sections of the two parts of the cable. The values of the radii in the figure are r1 = 1.5 mm, r2 = 4.0 mm, and r3 = 7.0 mm. Using Ampere’s Law, find the magnitude of the magnetic field at the following distances from the center of the inner wire: a. 1.0 mm. b. 3.0 mm. c. 5.5 mm. d. 9.0 mm.arrow_forwardA closed curve encircles several conductors. The line integral PB.dL around this curve is 3,83x104 T.m (a) What is the net current in the conductors? (b) If you were to integrate around the curve in the opposite direction, what would be the value of the line integral? Select one: lenci=D 305 A, 0.0 T.m lencl = 502 A, -3.83 x 10 4T.m lenci = 502 A, -7.66 x 104 T.m lencl = 600 A, -7.66 x 104T.m lencl = 305 A, -3.83 x 10 4 T.m lencl = 502 A, 0.0 T.m %3Darrow_forward
- Question #1. Consider a current-carrying circular wire with radius r. Find the angle between the infinitesimal length dl and some distance h? +z dl h dB +y y Current-carrying circular wire Note: radius r is perpendicular to the screen Select one: O 90° O 0° O 180° O 270°arrow_forwardE13P5arrow_forwardZero to 1: Two very long, parallel wires are separated by d = 0.015 m. The first wire carries a current of I1 = 0.35 A. The second wire carries a current of I2 = 0.45 A. A) Express the magnitude of the force between the wires per unit length, f, in terms of I1, I2, and d. B) Calculate the numerical value of f in N/m. C) Is the force repulsive or attractive? D) Express the minimal work per unit length needed to separate the two wires from d to 2d. E) Calculate the numerical value of w in J/m.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY