University Physics with Modern Physics, Volume 2 (Chs. 21-37); Mastering Physics with Pearson eText -- ValuePack Access Card (14th Edition)
14th Edition
ISBN: 9780134265414
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 28, Problem 28.19DQ
To determine
The reason for magnetic susceptibility of paramagnetic material is dependent of temperature and for diamagnetic materials independent of temperature.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The magnetic susceptibility of paramagnetic materials is quite strongly temperature dependent, but that of diamagnetic materials is nearly independent of temperature. Why the difference?
The magnetic susceptibility of paramagnetic
materials is considerably dependent on
temperature, whereas the susceptibility of
diamagnetic materials is virtually
temperature independent. Why is there a
distinction?
Why should the permeability of a paramagnetic material be expected to decrease with increasing temperature?
Chapter 28 Solutions
University Physics with Modern Physics, Volume 2 (Chs. 21-37); Mastering Physics with Pearson eText -- ValuePack Access Card (14th Edition)
Ch. 28.1 - (a) If two protons are traveling parallel to each...Ch. 28.2 - An infinitesimal current element located at the...Ch. 28.3 - The accompanying figure shows a circuit that lies...Ch. 28.4 - A solenoid is a wire wound into a helical coil....Ch. 28.5 - Prob. 28.5TYUCh. 28.6 - The accompanying figure shows magnetic field lines...Ch. 28.7 - Prob. 28.7TYUCh. 28.8 - Which of the following materials are attracted to...Ch. 28 - A topic of current interest in physics research is...Ch. 28 - Streams of charged particles emitted from the sun...
Ch. 28 - The text discussed the magnetic field of an...Ch. 28 - Prob. 28.4DQCh. 28 - Pairs of conductors carrying current into or out...Ch. 28 - Suppose you have three long, parallel wires...Ch. 28 - In deriving the force on one of the long,...Ch. 28 - Two concentric, coplanar, circular loops of wire...Ch. 28 - A current was sent through a helical coil spring....Ch. 28 - Prob. 28.10DQCh. 28 - Prob. 28.11DQCh. 28 - Two very long, parallel wires carry equal currents...Ch. 28 - In the circuit shown in Fig. Q28.13, when switch S...Ch. 28 - A metal ring carries a current that causes a...Ch. 28 - Prob. 28.15DQCh. 28 - Prob. 28.16DQCh. 28 - If a magnet is suspended over a container of...Ch. 28 - Prob. 28.18DQCh. 28 - Prob. 28.19DQCh. 28 - A cylinder of iron is placed so that it is free to...Ch. 28 - Prob. 28.1ECh. 28 - Prob. 28.2ECh. 28 - An electron moves at 0.100c as shown in Fig....Ch. 28 - An alpha particle (charge +2e) and an electron...Ch. 28 - A 4.80-C charge is moving at a constant speed of...Ch. 28 - Positive point charges q = +8.00 C and q' = +3.00...Ch. 28 - A negative charge q = 3.60 106 C is located at...Ch. 28 - An electron and a proton are each moving at 735...Ch. 28 - A straight wire carries a 10.0-A current (Fig....Ch. 28 - A short current element dl = (0.500 mm) carries a...Ch. 28 - A long, straight wire lies along the z-axis and...Ch. 28 - Two parallel wires are 5.00 cm apart and carry...Ch. 28 - Prob. 28.13ECh. 28 - A square wire loop 10.0 cm on each side carries a...Ch. 28 - The Magnetic Field from a Lightning Bolt....Ch. 28 - A very long, straight horizontal wire carries a...Ch. 28 - Prob. 28.17ECh. 28 - BIO Bacteria Navigation. Certain bacteria (such as...Ch. 28 - (a) How large a current would a very long,...Ch. 28 - Two long, straight wires, one above the other, are...Ch. 28 - A long, straight wire lies along the y-axis and...Ch. 28 - BIO Transmission Lines and Health. Currents in dc...Ch. 28 - Two long, straight, parallel wires, 10.0 cm apart,...Ch. 28 - A rectangular loop with dimensions 4.20 cm by 9.50...Ch. 28 - Four, long, parallel power lines each carry 100-A...Ch. 28 - Four very long, current-carrying wires in the same...Ch. 28 - Two very long insulated wires perpendicular to...Ch. 28 - Three very long parallel wires each carry current...Ch. 28 - Two long, parallel wires arc separated by a...Ch. 28 - Prob. 28.30ECh. 28 - Lamp Cord Wires. The wires in a household lamp...Ch. 28 - Prob. 28.32ECh. 28 - BIO Currents in the Brain. The magnetic field...Ch. 28 - Calculate the magnitude and direction of the...Ch. 28 - Calculate the magnitude of the magnetic field at...Ch. 28 - A closely wound, circular coil with radius 2.40 cm...Ch. 28 - A single circular current loop 10.0 cm in diameter...Ch. 28 - A closely wound coil has a radius of 6.00 cm and...Ch. 28 - Two concentric circular loops of wire lie on a...Ch. 28 - Figure E28.40 shows, in cross section, several...Ch. 28 - A closed curve encircles several conductors. The...Ch. 28 - As a new electrical technician, you are designing...Ch. 28 - Prob. 28.43ECh. 28 - Prob. 28.44ECh. 28 - A solenoid that is 35 cm long and contains 450...Ch. 28 - A 15.0-cm-long solenoid with radius 0.750 cm is...Ch. 28 - A solenoid is designed to produce a magnetic field...Ch. 28 - A toroidal solenoid has an inner radius of 12.0 cm...Ch. 28 - A magnetic field of 37.2 T has been achieved at...Ch. 28 - An ideal toroidal solenoid (see Example 28.10) has...Ch. 28 - A wooden ring whose mean diameter is 14.0 cm is...Ch. 28 - A toroidal solenoid with 400 turns of wire and a...Ch. 28 - A long solenoid with 60 turns of wire per...Ch. 28 - The current in the windings of a toroidal solenoid...Ch. 28 - A pair of point charges, q = +8.00 C and q' = 5.00...Ch. 28 - At a particular instant, charge q1 = +4.80 106C...Ch. 28 - Two long, parallel transmission lines, 40.0 cm...Ch. 28 - A long, straight wire carries a current of 8.60 A....Ch. 28 - Prob. 28.59PCh. 28 - Prob. 28.60PCh. 28 - An electric bus operates by drawing direct current...Ch. 28 - Figure P28.62 shows an end view of two long,...Ch. 28 - Prob. 28.63PCh. 28 - The long, straight wire AB shown in Fig. P28.64...Ch. 28 - CP Two long, parallel wires hang by 4.00-cm-long...Ch. 28 - The wire semicircles shown in Fig. P28.66 have...Ch. 28 - CALC Helmholtz Coils. Figure P28.67 is a sectional...Ch. 28 - Prob. 28.68PCh. 28 - CALC A long, straight wire with a circular cross...Ch. 28 - CALC The wire shown in Fig. P28.70 is infinitely...Ch. 28 - Prob. 28.71PCh. 28 - Prob. 28.72PCh. 28 - An Infinite Current Sheet. Long, straight...Ch. 28 - Long, straight conductors with square cross...Ch. 28 - A long, straight, solid cylinder, oriented with...Ch. 28 - Prob. 28.76PCh. 28 - DATA You use a teslameter (a Hall-effect device)...Ch. 28 - DATA A pair of long, rigid metal rods, each of...Ch. 28 - CP Two long, straight conducting wires with linear...Ch. 28 - Prob. 28.80CPCh. 28 - BIO STUDYING MAGNETIC BACTERIA. Some types of...Ch. 28 - Prob. 28.82PPCh. 28 - The solenoid is removed from the enclosure and...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The current in a long solenoid of radius 3 cm and 20 turns cm is varied with time at a rate of 2 A/s. Find the electric field at a distance of 4 cm from die center of the solenoid.arrow_forwardA solenoid with an iron core is 25 cm long and is wrapped with 100 turns of wire. When the current through the solenoid is 10 A, the magnetic field inside it is 2.0 T. For this current, what is the permeability of the iron? If the current is turned off and then restored to 10 A, will the magnetic field necessarily return to 2.0 T?arrow_forwardA current of 1.2 A is flowing in a coaxial cable whose outer radius is five times its inner radius. What is the magnetic field energy stored in a 3.0-m length of the cable?arrow_forward
- Hall potentials are much larger for poor conductors than for good conductors. Why?arrow_forwardReview. The use of superconductors has been proposed for power transmission lines. A single coaxial cable (Fig. P23.73) could carry a power of 1.00 103 MW (the output of a large power plant) at 200 kV, DC, over a distance of 1.00 103 km without loss. An inner wire of radius a = 2.00 cm, made from the superconductor Nb3Sn, carries the current I in one direction. A surrounding superconducting cylinder of radius b = 5.00 cm would carry the return current I. In such a system, what is the magnetic field (a) at the surface of the inner conductor and (b) at the inner surface of the outer conductor? (c) How much energy would be stored in the magnetic field in the space between the conductors in a 1.00 103 km superconducting line? (d) What is the pressure exerted on the outer conductor due to the current in the inner conductor? Figure. P23.73arrow_forwardA square loop whose sides are 6.0-cm long is made with copper wire of radius 1.0 mm. If a magnetic field perpendicular to the loop is changing at a rate of 5.0 mT/s, what is the current in the loop?arrow_forward
- The magnetic field perpendicular to a single sire loop of diameter 10.0 cm decreases fron 0.50 T to zero. The re Is made of copper and has a diameter of 2.0 mm and length 1.0 cm. How much charge moves thrnugh the re while tt field is changing?arrow_forwardDoes increasing the magnitude of a uniform magnetic field through which a charge is traveling necessarily mean increasing the magnetic force on the charge? Does changing the direction of the field necessarily mean a change in the force on the charge?arrow_forwardThe accompanying figure shows a cross-section of a long, hollow, cylindrical conductor of inner radius r1= 3.0 cm and outer radius r2= 5.0 cm. A 50-A current distributed uniformly over the cross-section flows into the page. Calculate the magnetic field at r = 2.0 cm. r = 4.0 cm. and r = 6.0 cm.arrow_forward
- A bar magnet falls under the influence of gravity along the axis of a long copper tube. If air resistance is negligible, will there be a force to oppose the descent of the magnet? If so, will the magnet reach a terminal velocity?arrow_forwardThe density of charge carriers far copper is 8.471028 electrons per cubic meter. What will be the Hall voltage reading from a probe made up of 3cm2cm1cm ( (LWT) ) copper plate when a current of 1.5 A is passed through it in a magnetic field of 2.5 T perpendicular to the 3cm2cm .arrow_forwardTwo long, parallel wires are hung by cords of length 5.0 cm, as shown in the accompanying figure. Each wire has a mass per unit length of 30 g/m, and they carry the same current in opposite directions. What is the current if the cords hang at 6.0° with respect to the vertical?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning