Conceptual Physics (12th Edition)
Conceptual Physics (12th Edition)
12th Edition
ISBN: 9780321909107
Author: Paul G. Hewitt
Publisher: PEARSON
bartleby

Concept explainers

Question
Book Icon
Chapter 28, Problem 1RCQ
To determine

The effect of incident light that falls on an object affect the motion of electrons in the atoms of the object

Expert Solution & Answer
Check Mark

Answer to Problem 1RCQ

Solution:

The light incident on an object can be absorbed, reflected or transmitted by the electrons in the atoms of the object.

Explanation of Solution

When light with a certain frequency is incident on an object it can be absorbed, reflected or transmitted by the electrons in the atoms of the object. It depends on the frequency of incident light. If Sunlight is incident which contains several frequencies only some of them are absorbed and the remaining are reflected or transmitted. If the frequency of incident light equals the natural frequency of electrons of an atom in the object then the light is absorbed, and the electrons begin to vibrate. This vibrational energy is then converted into thermal energy..

Sometimes an object may have several types of atoms having different natural frequencies. If Sunlight is incident on this type of object with many frequencies a range of frequencies may be absorbed by the object. The incident frequency which is not equal to the natural frequency of atoms in the object can be transmitted or reflected. When this frequency is incident the electrons begin to vibrate with small amplitude. If the object is transparent then this vibration energy is given to neighboring atoms and finally, a light wave is transmitted through the other side of the object. If the object is opaque, then the vibration energy cannot be shared with neighboring atoms and hence, the light is reflected through the incident side of the object.

Conclusion:

When light with many frequencies are incident on an object, some of them are absorbed by the object and the remaining are transmitted or reflected depending on the incident frequencies.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The slender rods have a weight of 6 lb/ft. (Figure 1) Figure Part A 1.5 ft- 1.5 ft 2 ft 1 ft 1 of 1 Determine the moment of inertia of the assembly about an axis perpendicular to the page and passing through the point A. Express your answer to three significant figures and include the appropriate units. IA = Value Submit Request Answer ? Units
You have a summer internship at NASA and are working on plans for a new space station to be launched into orbit around the Earth. The design of the space station is shown. It is to be constructed in the shape of a hollow ring of mass 58,500 kg. The structures other than the ring shown in the figure have negligible mass compared to the ring. Members of the crew will walk on a deck formed by the inner surface of the outer cylindrical wall of the ring, with radius r = 125 m. The thickness of the ring is very small compared to the radius, so we can model the ring as a hoop. At rest when constructed, the ring is to be set rotating about its axis so that the people standing inside on this deck experience an effective free-fall acceleration equal to g. The rotation is achieved by firing two small rockets attached tangentially to opposite points on the rim of the ring. Your supervisor asks you to determine the following: (a) the time interval during which the rockets must be fired if each…
The polar ice caps have a combined mass of about 2.65 × 1019 kg. If all of the ice in the polar ice caps melted, by how much time would the length of a day (Earth's rotational period) change? For simplicity, assume each ice cap is an identical thin solid disk with a radius of 7.20 x 105 m. Find the change both in seconds and as a percentage of duration of a day. change in time percent change (No Response) s (No Response) %

Chapter 28 Solutions

Conceptual Physics (12th Edition)

Ch. 28 - Prob. 11RCQCh. 28 - Prob. 12RCQCh. 28 - Prob. 13RCQCh. 28 - Prob. 14RCQCh. 28 - Prob. 15RCQCh. 28 - Prob. 16RCQCh. 28 - Prob. 17RCQCh. 28 - Prob. 18RCQCh. 28 - Prob. 19RCQCh. 28 - Prob. 20RCQCh. 28 - Prob. 21RCQCh. 28 - Prob. 22RCQCh. 28 - Prob. 23RCQCh. 28 - Prob. 24RCQCh. 28 - Prob. 25RCQCh. 28 - Prob. 26RCQCh. 28 - Prob. 27RCQCh. 28 - Prob. 28RCQCh. 28 - Prob. 29RCQCh. 28 - Prob. 30RCQCh. 28 - Prob. 31RCQCh. 28 - Prob. 32RCQCh. 28 - Prob. 33RCQCh. 28 - Prob. 34RCQCh. 28 - Prob. 35RCQCh. 28 - Prob. 36RCQCh. 28 - Prob. 37RCQCh. 28 - Prob. 38RCQCh. 28 - Prob. 39RCQCh. 28 - Prob. 40RCQCh. 28 - No glass is perfectly transparent. Mainly because...Ch. 28 - Prob. 42RCQCh. 28 - Prob. 43RCQCh. 28 - Prob. 44RCQCh. 28 - Prob. 45RCQCh. 28 - Prob. 46RCQCh. 28 - Prob. 47RCQCh. 28 - Prob. 48RCQCh. 28 - Prob. 49RCQCh. 28 - Prob. 50RCQCh. 28 - Prob. 51RCQCh. 28 - Prob. 52RCQCh. 28 - Prob. 53RCQCh. 28 - Prob. 54RCQCh. 28 - Prob. 55RCQCh. 28 - Prob. 56RCQCh. 28 - Prob. 57RCQCh. 28 - Prob. 58RCQCh. 28 - Prob. 59RCQCh. 28 - What must be the minimum length of a plane mirror...Ch. 28 - Prob. 61RCQCh. 28 - Prob. 62RCQCh. 28 - Prob. 63RCQCh. 28 - Prob. 64RCQCh. 28 - Prob. 65RCQCh. 28 - Prob. 66RCQCh. 28 - Prob. 67RCQCh. 28 - Prob. 68RCQCh. 28 - Prob. 69RCQCh. 28 - Prob. 70RCQCh. 28 - Prob. 71RCQCh. 28 - Prob. 72RCQCh. 28 - Prob. 73RCQCh. 28 - Prob. 74RCQCh. 28 - Prob. 75RCQCh. 28 - Prob. 76RCQCh. 28 - Prob. 77RCQCh. 28 - Prob. 78RCQCh. 28 - Prob. 79RCQCh. 28 - Prob. 80RCQCh. 28 - Prob. 81RCQCh. 28 - Prob. 82RCQCh. 28 - Prob. 83RCQCh. 28 - Prob. 84RCQCh. 28 - Prob. 85RCQCh. 28 - Prob. 86RCQCh. 28 - Prob. 87RCQCh. 28 - Prob. 88RCQCh. 28 - Prob. 89RCQCh. 28 - Prob. 90RCQCh. 28 - Prob. 91RCQCh. 28 - Prob. 92RCQCh. 28 - Prob. 93RCQCh. 28 - Prob. 94RCQCh. 28 - Prob. 95RCQCh. 28 - Prob. 96RCQCh. 28 - Prob. 97RCQCh. 28 - Prob. 98RCQCh. 28 - Prob. 99RCQCh. 28 - Prob. 100RCQCh. 28 - Prob. 101RCQCh. 28 - Rays of light moving upward through water toward...Ch. 28 - Prob. 103RCQCh. 28 - Prob. 104RCQCh. 28 - Prob. 105RCQCh. 28 - Prob. 106RCQCh. 28 - Prob. 107RCQCh. 28 - Prob. 108RCQCh. 28 - Prob. 109RCQCh. 28 - Prob. 110RCQCh. 28 - Prob. 111RCQ
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON