With the switch in the circuit of Figure 27.4a closed, there is no current in R2 because the current has an alternate zero-resistance path through the switch. There is current in R1, and this current is measured with the ammeter (a device for measuring current) at the bottom of the circuit. If the switch is opened (Fig. 27.4b), there is current in R2. What happens to the reading on the ammeter when the switch is opened? (a) The reading goes up. (b) The reading goes down. (c) The reading does not change.
Figure 27.4 (Quick Quiz 27.2) What happens when the switch is opened?
Trending nowThis is a popular solution!
Chapter 27 Solutions
Physics for Scientists and Engineers with Modern Physics
Additional Science Textbook Solutions
Mathematical Methods in the Physical Sciences
University Physics with Modern Physics (14th Edition)
Glencoe Physical Science 2012 Student Edition (Glencoe Science) (McGraw-Hill Education)
- In the circuit of Figure P27.25, the switch S has been open for a long time. It is then suddenly closed. Determine the time constant (a) before the switch is closed and (b) after the switch is closed. (c) Let the switch be closed at t = 0. Determine the current in the switch as a function of time. Figure P27.25 Problems 25 and 26.arrow_forwardThe current in a single-loop circuit with one resistance R is 5.8 A. When an additional resistance of 1.9 2 is inserted in series with R, the current drops to 5.1 A. What is R? Number i Units +arrow_forwardFor the circuit shown in the figure, C = 12 µF and R = 8.5 MΩ. Initially the switch S is open with the capacitor charged to a voltage of 80 V. The switch is then closed at time t = 0.00 s. What is the charge on the capacitor, when the current in the circuit is 3.3 µA?arrow_forward
- Question 8. Please help with the question attached below.arrow_forwardWith the switch in the circuit of 27.4a closed, there is no current in R2 because the current has an alternate zero-resistance path through the switch. There is current in R1, and this current is measured with the ammeter (a device for measuring current) at the bottom of the circuit. If the switch is opened (27.4b), there is current in R2. What happens to the reading on the ammeter when the switch is opened? (a) The reading goes up. (b) The reading goes down. (c) The reading does not change.arrow_forwardAn uncharged capacitor and a resistor are connected in series to a battery as shown in Figure, where e= 12.0 V, C = 5.00 mF, and R = 8.00 × 105 W. The switch is thrown to position a. Find the time constant of the circuit, the maximum charge on the capacitor, the maximum current in the circuit, and the charge and current as functions of time.arrow_forward
- The circuit on the right contains three resistors, A, B, and C, which all have equal resistances. The emf is 110V. Which resistor dissipates the most thermal energy after the switch is closed? (Resistor A, B, or C). Why? What other quantity is maximized to tell you that the energy is maximized?arrow_forwardYou connect a battery, a resistor, and a capacitor as shown in Figure 4, in that e = 36.0 V, C = 5.0 uF and R = 120 Ohms C. The switch S is closed at t = 0. (a) When the voltage across the capacitor is 8.00 V, what is the magnitude of the current in the circuit? (b) At what time t after the switch is closed the voltage across the capacitor is equal to 8.00 V? (c) When the voltage across the capacitor equals 8.00 V, at what speed is energy being stored in the capacitor? Translation: "Chave aberta" = switch openarrow_forward50.0 V Consider the circuit with R= 125 kQ and C = 407 uF. If the capacitor is initially uncharged, what will be the magnitude of the current in milliamps (mA) through the resistor at a time 26.3 seconds after the switch is closed? (Enter answer as a positive number with 3 digits right of decimal. Do not enter unit.)arrow_forward
- The capacitor, C1 = 1.2 pF, in the circuit below begins with no stored charge. At t = 0 seconds, the switch is closed. What is the current (in mA) through the resistor, R1 = 9.1 MQ, at t = 4.2 usec? R1 +12V wwarrow_forwardYou connect a battery, resistor, and capacitor as in (Figure 1), where E = 46.0 V, C = 5.00 μF, and R = 130 Ω. The switch S is closed at t = 0. When the voltage across the capacitor is 8.00 VV, what is the magnitude of the current in the circuit? At what time tt after the switch is closed is the voltage across the capacitor 8.00 V? When the voltage across the capacitor is 8.00 V, at what rate is energy being stored in the capacitor?arrow_forwardFor the circuit in the figure, at t = 0 the switch S is closed with the capacitor uncharged. If C = 52 µF, & = 80V, and R = 4 k2, what is the charge (in m) on the capacitor when the current in the circuit is I = 2.5 mA? S R Select one: OA 5.56 O B. 2.55 OC.4.13 OD. 4.68 OE. 3.64arrow_forward
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning