Physics
Physics
3rd Edition
ISBN: 9780073512150
Author: Alan Giambattista, Betty Richardson, Robert C. Richardson Dr.
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 27, Problem 96P

(a)

To determine

The work function of the metal.

(a)

Expert Solution
Check Mark

Answer to Problem 96P

The work function of the metal is 4.7eV_.

Explanation of Solution

Given that the wavelength of light is 180nm, the magnetic field strength is 7.5×105T, and the radius of the circular path is 6.7cm

Write the expression for the magnitude of the magnetic force on the electron when it enters perpendicular into the field.

  F=evB                                                                                                                  (I)

Here, F is the magnetic force, e is the charge of electron, v is the speed of electron, and B is the magnetic field strength.

The magnetic force is providing the necessary centripetal force for the motion of the electron. Thus, the magnetic force can be equated to the centripetal force on electron.

  evB=mv2r                                                                                                           (II)

Here, m is the mass of electron, and r is the radius of the circular path.

Solve equation (II) for v.

  v=eBrm                                                                                                               (III)

Write the expression for the maximum kinetic energy of the ejected electron.

  Kmax=12mv2                                                                                                      (IV)

Here, Kmax is the maximum kinetic energy of the ejected electron.

Write the expression for the maximum kinetic energy of the ejected electron in terms of the work function of the metal.

  Kmax=hcλϕ                                                                                                    (V)

Here, c is the speed of light,λ is the  h is the Planck’s constant, and ϕ is the work function of the metal.

Equate the right hand sides of equations (IV) and (V) and solve for ϕ.

  ϕ=hcλ12mv2                                                                                                     (VI)

Use equation (III) in (VI).

  ϕ=hcλ12m(eBrm)2=hcλ(eBr)22m                                                                                           (VI)

Conclusion:

Substitute 180nm for λ, 6.626×1034Js for h, 3.00×108m/s for c, 1.602×1019C for e, 7.5×105T for B, 6.7cm for r, and 9.1×1031kg for m in equation (VI) to find ϕ.

  ϕ=(6.626×1034Js)(3.00×108m/s)180nm[(1.602×1019C)(7.5×105T)(6.7cm)]22(9.1×1031kg)=(6.626×1034Js)(3.00×108m/s)180nm×1m1×109nm[(1.602×1019C)(7.5×105T)(6.7cm×1m100cm)]22(9.1×1031kg)=7.4833×1019J×1eV1.602×1019J=4.7eV

Therefore, the work function of the metal is 4.7eV_.

(b)

To determine

Whether the electrons with maximum kinetic energy follow a path with the maximum or minimum radius.

(b)

Expert Solution
Check Mark

Answer to Problem 96P

The electrons with maximum kinetic energy follow a path with the maximum radius.

Explanation of Solution

Equation (IV) indicates that the maximum kinetic energy of the electron is directly proportional to the square of the speed of the electrons.

  Kv2

Equation (III) indicates that the speed of the electron is directly proportional to the radius of the circular path.

  vr

Hence, it can be summarized that the maximum kinetic energy of the electron corresponds to the large value of the radius. Thus, The electrons with maximum kinetic energy follow a path with the maximum radius.

Conclusion:

Therefore, the electrons with maximum kinetic energy follow a path with the maximum radius.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
= Consider the schematic of the molecule shown, with two hydrogen atoms, H, bonded to an oxygen atom, O. The angle between the two bonds is 106°. If the bond length r 0.106 nm long, locate the center of mass of the molecule. The mass mH of the hydrogen atom is 1.008 u, and the mass mo of the oxygen atom is 15.9999 u. (Use a coordinate system centered in the oxygen atom, with the x-axis to the right and the y-axis upward. Give the coordinates of the center of mass in nm.) XCM YOM = = H 53° 53° nm nm r H
An approximate model for a ceiling fan consists of a cylindrical disk with four thin rods extending from the disk's center, as in the figure below. The disk has mass 2.60 kg and radius 0.200 m. Each rod has mass 0.850 kg and is 0.700 m long. HINT (a) Find the ceiling fan's moment of inertia about a vertical axis through the disk's center. (Enter your answer in kg • m².) kg. m² (b) Friction exerts a constant torque of magnitude 0.113 N m on the fan as it rotates. Find the magnitude of the constant torque provided by the fan's motor if the fan starts from rest and takes 15.0 s and 17.5 full revolutions to reach its maximum speed. (Enter your answer in N. m.) N.m
A uniform, thin rod hangs vertically at rest from a frictionless axle attached to its top end. The rod has a mass of 0.780 kg and a length of 1.54 m. (Assume a coordinate system where the +y-direction is up and the +x-direction is to the right. The rod is free to swing about the axle in the x- y plane.) (a) You take a hammer and strike the bottom end of the rod. At the instant the hammer strikes, the force it applies to the rod is (15.71) N. What is the acceleration (in m/s²) of the rod's center of mass at this instant? (Express your answer in vector form.) m/s² a = (b) What is the horizontal force (in N) that the axle exerts on the rod at this same instant? (Express your answer in vector form.) F = N (c) The rod then returns to hanging at rest. You again strike the rod with the hammer, applying the same force, but now you strike it at its midpoint. What now is the acceleration of the center of mass (in m/s²) at the instant of impact? (Express your answer in vector form.) m/s² a = (d)…

Chapter 27 Solutions

Physics

Ch. 27.7 - Prob. 27.8PPCh. 27.8 - Prob. 27.9PPCh. 27 - Prob. 2CQCh. 27 - Prob. 3CQCh. 27 - Prob. 4CQCh. 27 - Prob. 5CQCh. 27 - Prob. 6CQCh. 27 - Prob. 7CQCh. 27 - Prob. 8CQCh. 27 - Prob. 9CQCh. 27 - Prob. 10CQCh. 27 - Prob. 11CQCh. 27 - Prob. 12CQCh. 27 - Prob. 13CQCh. 27 - Prob. 14CQCh. 27 - Prob. 15CQCh. 27 - Prob. 16CQCh. 27 - Prob. 18CQCh. 27 - Prob. 19CQCh. 27 - Prob. 20CQCh. 27 - Prob. 21CQCh. 27 - Prob. 22CQCh. 27 - Prob. 23CQCh. 27 - Prob. 1MCQCh. 27 - Prob. 2MCQCh. 27 - Prob. 3MCQCh. 27 - Prob. 4MCQCh. 27 - Prob. 5MCQCh. 27 - Prob. 6MCQCh. 27 - Prob. 7MCQCh. 27 - Prob. 8MCQCh. 27 - Prob. 9MCQCh. 27 - Prob. 10MCQCh. 27 - Prob. 1PCh. 27 - Prob. 2PCh. 27 - Prob. 3PCh. 27 - Prob. 4PCh. 27 - Prob. 5PCh. 27 - Prob. 6PCh. 27 - Prob. 7PCh. 27 - Prob. 8PCh. 27 - Prob. 9PCh. 27 - Prob. 10PCh. 27 - Prob. 11PCh. 27 - Prob. 12PCh. 27 - Prob. 13PCh. 27 - Prob. 14PCh. 27 - Prob. 15PCh. 27 - Prob. 16PCh. 27 - Prob. 17PCh. 27 - Prob. 18PCh. 27 - Prob. 19PCh. 27 - Prob. 20PCh. 27 - Prob. 21PCh. 27 - Prob. 22PCh. 27 - Prob. 23PCh. 27 - Prob. 24PCh. 27 - Prob. 25PCh. 27 - Prob. 26PCh. 27 - Prob. 27PCh. 27 - Prob. 28PCh. 27 - Prob. 29PCh. 27 - Prob. 30PCh. 27 - Prob. 31PCh. 27 - Prob. 32PCh. 27 - Prob. 33PCh. 27 - Prob. 34PCh. 27 - Prob. 35PCh. 27 - Prob. 36PCh. 27 - Prob. 37PCh. 27 - Prob. 38PCh. 27 - Prob. 39PCh. 27 - Prob. 40PCh. 27 - Prob. 41PCh. 27 - Prob. 42PCh. 27 - Prob. 43PCh. 27 - Prob. 44PCh. 27 - Prob. 45PCh. 27 - Prob. 46PCh. 27 - Prob. 47PCh. 27 - Prob. 48PCh. 27 - Prob. 49PCh. 27 - Prob. 50PCh. 27 - Prob. 51PCh. 27 - Prob. 52PCh. 27 - Prob. 53PCh. 27 - Prob. 54PCh. 27 - Prob. 55PCh. 27 - Prob. 56PCh. 27 - Prob. 57PCh. 27 - Prob. 58PCh. 27 - Prob. 59PCh. 27 - Prob. 60PCh. 27 - Prob. 61PCh. 27 - Prob. 62PCh. 27 - Prob. 63PCh. 27 - Prob. 64PCh. 27 - Prob. 65PCh. 27 - Prob. 66PCh. 27 - Prob. 67PCh. 27 - Prob. 68PCh. 27 - Prob. 69PCh. 27 - Prob. 70PCh. 27 - Prob. 71PCh. 27 - Prob. 72PCh. 27 - Prob. 73PCh. 27 - Prob. 74PCh. 27 - Prob. 75PCh. 27 - Prob. 76PCh. 27 - Prob. 77PCh. 27 - Prob. 78PCh. 27 - Prob. 79PCh. 27 - Prob. 80PCh. 27 - Prob. 81PCh. 27 - Prob. 82PCh. 27 - Prob. 83PCh. 27 - Prob. 84PCh. 27 - Prob. 85PCh. 27 - Prob. 86PCh. 27 - Prob. 87PCh. 27 - Prob. 88PCh. 27 - Prob. 89PCh. 27 - Prob. 90PCh. 27 - Prob. 91PCh. 27 - Prob. 92PCh. 27 - Prob. 93PCh. 27 - Prob. 94PCh. 27 - Prob. 95PCh. 27 - Prob. 96PCh. 27 - Prob. 97PCh. 27 - Prob. 98P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY