Concept explainers
(a)
The expression for energy stored in the capacitor
(a)

Answer to Problem 83PQ
The expression for energy stored in the capacitor
Explanation of Solution
Write the expression to find the equivalent capacitance of the capacitors connected in parallel.
Here,
Write the expression charge on
Here,
Write the expression to find the voltage across the parallel combination.
Here,
Substitute equation (I), (II) in (III) to find the voltage across the parallel combination.
Write the equation for initial energy in the capacitor
Here,
Write the equation for final energy in the capacitor
Here,
Substitute
Conclusion:
Re-write the expression using equation (IV).
Therefore, the expression for energy stored in the capacitor
(b)
Show that
(b)

Answer to Problem 83PQ
Explanation of Solution
Write the expression for
Re-arrange the above expression to find the maximum point for
Substitute
The denominator has to be minimum to maximize the
Differentiate
Differentiate the above expression to find the points of maxima and minima
The second derivative gives a positive value when
Want to see more full solutions like this?
Chapter 27 Solutions
EBK WEBASSIGN FOR KATZ'S PHYSICS FOR SC
- Hi! I need help with these calculations for part i and part k for a physics Diffraction Lab. We used a slit width 0.4 mm to measure our pattern.arrow_forwardExamine the data and % error values in Data Table 3 where the angular displacement of the simple pendulum decreased but the mass of the pendulum bob and the length of the pendulum remained constant. Describe whether or not your data shows that the period of the pendulum depends on the angular displacement of the pendulum bob, to within a reasonable percent error.arrow_forwardIn addition to the anyalysis of the graph, show mathematically that the slope of that line is 2π/√g . Using the slope of your line calculate the value of g and compare it to 9.8.arrow_forward
- An object is placed 24.1 cm to the left of a diverging lens (f = -6.51 cm). A concave mirror (f= 14.8 cm) is placed 30.2 cm to the right of the lens to form an image of the first image formed by the lens. Find the final image distance, measured relative to the mirror. (b) Is the final image real or virtual? (c) Is the final image upright or inverted with respect to the original object?arrow_forwardConcept Simulation 26.4 provides the option of exploring the ray diagram that applies to this problem. The distance between an object and its image formed by a diverging lens is 5.90 cm. The focal length of the lens is -2.60 cm. Find (a) the image distance and (b) the object distance.arrow_forwardPls help ASAParrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College





