PHYSICS
PHYSICS
5th Edition
ISBN: 2818440038631
Author: GIAMBATTISTA
Publisher: MCG
bartleby

Concept explainers

Question
Book Icon
Chapter 27, Problem 82P
To determine

The energy of the γ-rays scattered through θ=90° and θ=180°.

Expert Solution & Answer
Check Mark

Answer to Problem 82P

The energy of the γ-rays scattered through θ=90° is 136keV, and that through θ=180° is 108keV_

Explanation of Solution

Given that the energy of the photons is 186keV.

In Compton scattering, photons scattered from a target have longer wavelengths than the incident photons. The Compton shift is given by the expression;

    Δλ=hmec(1cosθ)                                                                                                  (I)

Here, Δλ is the Compton shift, h is the Planck’s constant, c is the speed of light, me is the mass of the electron, θ is the scattering angle.

Write the expression for the wavelength of an incident photon.

    λ=hcE                                                                                                                    (II)

Here, E is the energy of the photon.

Write the expression for the wavelength of the scattered x-rays.

  λ=λ+Δλ                                                                                                            (III)

Here, λ is the wavelength of the photon scattered at angle θ, λ is the wavelength of the incident photon.

Write the expression for the energy of the scattered ray.

    E=hcλ                                                                                                                  (IV)

Here, E is the energy of the scattered photon.

Conclusion:

Substitute 90° for θ, and 2.426pm for hmec in equation (I) to find Δλ90°.

  Δλ90°=2.426pm(1cos90°)=2.426pm

Substitute 180° for θ, and 2.426pm for hmec in equation (I) to find Δλ180°.

  Δλ180°=2.426pm(1cos180°)=4.852pm

Substitute 1240eVnm for hc, 186keV for E in equation (II) to find λ.

  λ=1240eVnm186keV=(1240eVnm×1m1×109nm)(186keV×1000eV1keV)=6.667×1012m×1pm1×1012m=6.667pm

Substitute 6.667pm for λ, 2.426pm for Δλ in equation (III) to0 find λ90.

    λ90=6.667pm+2.426pm=9.09pm

Substitute 6.667pm for λ, 4.852pm for Δλ in equation (III) and solve for λ180°.

    λ180°=6.667pm+4.852pm=11.52pm

Substitute 1240eVnm for hc and 9.09pm for λ90° in equation (IV) to find E90°.

    E90°=1240eVnm9.09pm=1240eVnm9.09pm×1nm1000pm=1.36×105eV×1keV1000eV=136keV

Substitute 1240eVnm for hc and 11.52pm for λ180° in equation (IV) to find E180°.

    E180°=1240eVnm11.52pm=1240eVnm11.52pm×1nm1000pm=1.08×105eV×1keV1000eV=108keV

Therefore, the energy of the γ-rays scattered through θ=90° is 136keV, and that through θ=180° is 108keV_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Can someone help me answer this physics 2 questions. Thank you.
Four capacitors are connected as shown in the figure below. (Let C = 12.0 μF.) a C 3.00 με Hh. 6.00 με 20.0 με HE (a) Find the equivalent capacitance between points a and b. 5.92 HF (b) Calculate the charge on each capacitor, taking AV ab = 16.0 V. 20.0 uF capacitor 94.7 6.00 uF capacitor 67.6 32.14 3.00 µF capacitor capacitor C ☑ με με The 3 µF and 12.0 uF capacitors are in series and that combination is in parallel with the 6 μF capacitor. What quantity is the same for capacitors in parallel? μC 32.14 ☑ You are correct that the charge on this capacitor will be the same as the charge on the 3 μF capacitor. μC
In the pivot assignment, we observed waves moving on a string stretched by hanging weights. We noticed that certain frequencies produced standing waves. One such situation is shown below: 0 ст Direct Measurement ©2015 Peter Bohacek I. 20 0 cm 10 20 30 40 50 60 70 80 90 100 Which Harmonic is this? Do NOT include units! What is the wavelength of this wave in cm with only no decimal places? If the speed of this wave is 2500 cm/s, what is the frequency of this harmonic (in Hz, with NO decimal places)?

Chapter 27 Solutions

PHYSICS

Ch. 27.7 - Prob. 27.7PPCh. 27.7 - Prob. 27.8PPCh. 27.8 - Prob. 27.9PPCh. 27 - Prob. 1CQCh. 27 - Prob. 2CQCh. 27 - Prob. 3CQCh. 27 - Prob. 4CQCh. 27 - Prob. 5CQCh. 27 - Prob. 6CQCh. 27 - Prob. 7CQCh. 27 - Prob. 8CQCh. 27 - Prob. 9CQCh. 27 - Prob. 10CQCh. 27 - Prob. 11CQCh. 27 - Prob. 12CQCh. 27 - Prob. 13CQCh. 27 - Prob. 14CQCh. 27 - Prob. 15CQCh. 27 - Prob. 16CQCh. 27 - Prob. 17CQCh. 27 - Prob. 18CQCh. 27 - Prob. 19CQCh. 27 - Prob. 20CQCh. 27 - Prob. 21CQCh. 27 - Prob. 22CQCh. 27 - Prob. 23CQCh. 27 - Prob. 1MCQCh. 27 - Prob. 2MCQCh. 27 - Prob. 3MCQCh. 27 - Prob. 4MCQCh. 27 - Prob. 5MCQCh. 27 - Prob. 6MCQCh. 27 - Prob. 7MCQCh. 27 - Prob. 8MCQCh. 27 - Prob. 9MCQCh. 27 - Prob. 10MCQCh. 27 - Prob. 1PCh. 27 - Prob. 2PCh. 27 - Prob. 3PCh. 27 - Prob. 4PCh. 27 - Prob. 5PCh. 27 - Prob. 6PCh. 27 - Prob. 7PCh. 27 - Prob. 8PCh. 27 - Prob. 9PCh. 27 - Prob. 10PCh. 27 - Prob. 11PCh. 27 - Prob. 12PCh. 27 - Prob. 13PCh. 27 - Prob. 14PCh. 27 - Prob. 15PCh. 27 - Prob. 16PCh. 27 - Prob. 17PCh. 27 - Prob. 18PCh. 27 - Prob. 19PCh. 27 - Prob. 20PCh. 27 - Prob. 21PCh. 27 - Prob. 22PCh. 27 - Prob. 23PCh. 27 - Prob. 24PCh. 27 - Prob. 25PCh. 27 - Prob. 26PCh. 27 - Prob. 27PCh. 27 - Prob. 28PCh. 27 - Prob. 29PCh. 27 - Prob. 30PCh. 27 - Prob. 31PCh. 27 - Prob. 32PCh. 27 - Prob. 33PCh. 27 - Prob. 34PCh. 27 - Prob. 35PCh. 27 - Prob. 36PCh. 27 - Prob. 37PCh. 27 - Prob. 38PCh. 27 - Prob. 39PCh. 27 - Prob. 40PCh. 27 - Prob. 41PCh. 27 - Prob. 42PCh. 27 - Prob. 43PCh. 27 - Prob. 44PCh. 27 - Prob. 45PCh. 27 - Prob. 46PCh. 27 - Prob. 47PCh. 27 - Prob. 48PCh. 27 - Prob. 49PCh. 27 - Prob. 50PCh. 27 - Prob. 51PCh. 27 - Prob. 52PCh. 27 - Prob. 53PCh. 27 - Prob. 54PCh. 27 - Prob. 55PCh. 27 - Prob. 56PCh. 27 - Prob. 57PCh. 27 - Prob. 58PCh. 27 - Prob. 59PCh. 27 - Prob. 61PCh. 27 - Prob. 60PCh. 27 - Prob. 62PCh. 27 - Prob. 64PCh. 27 - Prob. 63PCh. 27 - Prob. 66PCh. 27 - Prob. 65PCh. 27 - Prob. 68PCh. 27 - Prob. 67PCh. 27 - Prob. 70PCh. 27 - Prob. 69PCh. 27 - Prob. 72PCh. 27 - Prob. 71PCh. 27 - Prob. 74PCh. 27 - Prob. 73PCh. 27 - Prob. 75PCh. 27 - Prob. 76PCh. 27 - Prob. 77PCh. 27 - Prob. 78PCh. 27 - Prob. 79PCh. 27 - Prob. 80PCh. 27 - Prob. 82PCh. 27 - Prob. 81PCh. 27 - Prob. 84PCh. 27 - Prob. 83PCh. 27 - Prob. 86PCh. 27 - Prob. 85PCh. 27 - Prob. 88PCh. 27 - Prob. 87PCh. 27 - Prob. 89PCh. 27 - Prob. 90PCh. 27 - Prob. 91PCh. 27 - Prob. 92PCh. 27 - Prob. 93PCh. 27 - Prob. 94PCh. 27 - Prob. 95PCh. 27 - Prob. 96P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON