(a)
A spreadsheet for
(a)
Answer to Problem 80AP
A spreadsheet for
(Volts) |
(Amperes) |
|
0.4 | 0.015932 | 25.1067 |
0.405 | 0.019602 | 20.66116 |
0.41 | 0.024117 | 17.00046 |
0.415 | 0.029673 | 13.98578 |
0.42 | 0.036508 | 11.50433 |
0.425 | 0.044918 | 9.461686 |
0.43 | 0.055264 | 7.780834 |
0.435 | 0.067995 | 6.397529 |
0.44 | 0.083657 | 5.259572 |
0.445 | 0.102927 | 4.323453 |
0.45 | 0.126637 | 3.553464 |
0.455 | 0.155807 | 2.92028 |
0.46 | 0.191697 | 2.39962 |
0.465 | 0.235855 | 1.97155 |
0.47 | 0.290184 | 1.619662 |
0.475 | 0.357027 | 1.330432 |
0.48 | 0.439268 | 1.092727 |
0.485 | 0.540454 | 0.897394 |
0.495 | 0.818117 | 0.605048 |
0.5 | 1.006569 | 0.496737 |
0.505 | 1.238432 | 0.407774 |
0.51 | 1.523704 | 0.334711 |
0.515 | 1.874688 | 0.274712 |
0.52 | 2.306521 | 0.225448 |
0.525 | 2.837827 | 0.185001 |
0.53 | 3.491518 | 0.151796 |
0.535 | 4.295787 | 0.124541 |
0.54 | 5.285319 | 0.10217 |
0.545 | 6.502788 | 0.08381 |
0.55 | 8.000701 | 0.068744 |
0.555 | 9.843657 | 0.056381 |
0.56 | 12.11114 | 0.046238 |
0.565 | 14.90093 | 0.037917 |
0.57 | 18.33335 | 0.031091 |
0.575 | 22.55642 | 0.025492 |
0.58 | 27.75228 | 0.020899 |
0.585 | 34.145 | 0.017133 |
0.59 | 42.01028 | 0.014044 |
0.595 | 51.68732 | 0.011512 |
0.6 | 63.59346 | 0.009435 |
A spreadsheet for
(Volts) |
(Amperes) |
|
0.4 | 0.005274 | 75.84672 |
0.405 | 0.0064 | 63.28565 |
0.41 | 0.007766 | 52.79679 |
0.415 | 0.009423 | 44.03979 |
0.42 | 0.011435 | 36.72991 |
0.425 | 0.013876 | 30.62901 |
0.43 | 0.016838 | 25.53795 |
0.435 | 0.020432 | 21.29022 |
0.44 | 0.024793 | 17.74668 |
0.445 | 0.030086 | 14.79101 |
0.45 | 0.036508 | 12.32605 |
0.455 | 0.044301 | 10.27061 |
0.46 | 0.053758 | 8.556892 |
0.465 | 0.065233 | 7.128278 |
0.47 | 0.079158 | 5.937492 |
0.475 | 0.096055 | 4.945067 |
0.48 | 0.11656 | 4.118066 |
0.485 | 0.141441 | 3.428998 |
0.495 | 0.20827 | 2.376718 |
0.5 | 0.252728 | 1.978408 |
0.505 | 0.306677 | 1.646686 |
0.51 | 0.372141 | 1.370449 |
0.515 | 0.451579 | 1.140443 |
0.52 | 0.547974 | 0.948949 |
0.525 | 0.664947 | 0.789537 |
0.53 | 0.806888 | 0.656844 |
0.535 | 0.979129 | 0.546404 |
0.54 | 1.188137 | 0.454493 |
0.545 | 1.44176 | 0.37801 |
0.55 | 1.749522 | 0.314372 |
0.555 | 2.122981 | 0.261425 |
0.56 | 2.576159 | 0.217378 |
0.565 | 3.126073 | 0.180738 |
0.57 | 3.793374 | 0.150262 |
0.575 | 4.603119 | 0.124915 |
0.58 | 5.585715 | 0.103836 |
0.585 | 6.778058 | 0.086308 |
0.59 | 8.224923 | 0.071733 |
0.595 | 9.98064 | 0.059615 |
0.6 | 12.11114 | 0.049541 |
A spreadsheet for
(Volts) |
(Amperes) |
|
0.4 | 0.002004 | 199.5582 |
0.405 | 0.002403 | 168.5349 |
0.41 | 0.002881 | 142.3127 |
0.415 | 0.003454 | 120.1526 |
0.42 | 0.004141 | 101.4283 |
0.425 | 0.004964 | 85.60991 |
0.43 | 0.005952 | 72.24847 |
0.435 | 0.007135 | 60.96416 |
0.44 | 0.008554 | 51.43551 |
0.445 | 0.010256 | 43.39059 |
0.45 | 0.012295 | 36.59933 |
0.455 | 0.014741 | 30.86719 |
0.46 | 0.017672 | 26.02967 |
0.465 | 0.021187 | 21.9477 |
0.47 | 0.0254 | 18.50372 |
0.475 | 0.030452 | 15.59839 |
0.48 | 0.036508 | 13.14778 |
0.485 | 0.043769 | 11.08098 |
0.495 | 0.062909 | 7.868498 |
0.5 | 0.07542 | 6.629515 |
0.505 | 0.09042 | 5.585066 |
0.51 | 0.108402 | 4.704703 |
0.515 | 0.129961 | 3.962729 |
0.52 | 0.155807 | 3.337456 |
0.525 | 0.186794 | 2.810585 |
0.53 | 0.223943 | 2.366674 |
0.535 | 0.26848 | 1.992698 |
0.54 | 0.321875 | 1.67767 |
0.545 | 0.385889 | 1.412324 |
0.55 | 0.462633 | 1.188846 |
0.555 | 0.554641 | 1.000647 |
0.56 | 0.664947 | 0.842173 |
0.565 | 0.79719 | 0.70874 |
0.57 | 0.955733 | 0.596401 |
0.575 | 1.145807 | 0.50183 |
0.58 | 1.373682 | 0.422223 |
0.585 | 1.646877 | 0.355218 |
0.59 | 1.974404 | 0.298824 |
0.595 | 2.367069 | 0.251366 |
0.6 | 2.837827 | 0.211429 |
Explanation of Solution
Given information: Th first symbol i.e. Euler’s number is
It is given that the expression for the current-voltage characteristic curve for a semiconductor diode as a function of temperature
Here,
Formula to calculate the resistance across the diode is,
Here,
The value of magnitude of electron charge is
The value of Boltzmann’s constant is
The value of voltage across the diode varies from
From equation (1), formula to calculate the current across a semiconductor diode temperature
Here,
Substitute
Thus, the current across a semiconductor diode temperature
From equation (2), formula to calculate the resistance across the diode is,
Here,
Substitute
Thus, the resistance across the diode is
As the value of voltage across the diode varies from
Thus, a spreadsheet for
(Volts) |
(Amperes) |
|
0.4 | 0.015932 | 25.1067 |
0.405 | 0.019602 | 20.66116 |
0.41 | 0.024117 | 17.00046 |
0.415 | 0.029673 | 13.98578 |
0.42 | 0.036508 | 11.50433 |
0.425 | 0.044918 | 9.461686 |
0.43 | 0.055264 | 7.780834 |
0.435 | 0.067995 | 6.397529 |
0.44 | 0.083657 | 5.259572 |
0.445 | 0.102927 | 4.323453 |
0.45 | 0.126637 | 3.553464 |
0.455 | 0.155807 | 2.92028 |
0.46 | 0.191697 | 2.39962 |
0.465 | 0.235855 | 1.97155 |
0.47 | 0.290184 | 1.619662 |
0.475 | 0.357027 | 1.330432 |
0.48 | 0.439268 | 1.092727 |
0.485 | 0.540454 | 0.897394 |
0.495 | 0.818117 | 0.605048 |
0.5 | 1.006569 | 0.496737 |
0.505 | 1.238432 | 0.407774 |
0.51 | 1.523704 | 0.334711 |
0.515 | 1.874688 | 0.274712 |
0.52 | 2.306521 | 0.225448 |
0.525 | 2.837827 | 0.185001 |
0.53 | 3.491518 | 0.151796 |
0.535 | 4.295787 | 0.124541 |
0.54 | 5.285319 | 0.10217 |
0.545 | 6.502788 | 0.08381 |
0.55 | 8.000701 | 0.068744 |
0.555 | 9.843657 | 0.056381 |
0.56 | 12.11114 | 0.046238 |
0.565 | 14.90093 | 0.037917 |
0.57 | 18.33335 | 0.031091 |
0.575 | 22.55642 | 0.025492 |
0.58 | 27.75228 | 0.020899 |
0.585 | 34.145 | 0.017133 |
0.59 | 42.01028 | 0.014044 |
0.595 | 51.68732 | 0.011512 |
0.6 | 63.59346 | 0.009435 |
From equation (1), formula to calculate the current across a semiconductor diode temperature
Here,
Substitute
Thus, the current across a semiconductor diode temperature
From equation (2), formula to calculate the resistance across the diode is,
Here,
Substitute
Thus, the resistance across the diode is
As the value of voltage across the diode varies from
Thus, a spreadsheet for
(Volts) |
(Amperes) |
|
0.4 | 0.005274 | 75.84672 |
0.405 | 0.0064 | 63.28565 |
0.41 | 0.007766 | 52.79679 |
0.415 | 0.009423 | 44.03979 |
0.42 | 0.011435 | 36.72991 |
0.425 | 0.013876 | 30.62901 |
0.43 | 0.016838 | 25.53795 |
0.435 | 0.020432 | 21.29022 |
0.44 | 0.024793 | 17.74668 |
0.445 | 0.030086 | 14.79101 |
0.45 | 0.036508 | 12.32605 |
0.455 | 0.044301 | 10.27061 |
0.46 | 0.053758 | 8.556892 |
0.465 | 0.065233 | 7.128278 |
0.47 | 0.079158 | 5.937492 |
0.475 | 0.096055 | 4.945067 |
0.48 | 0.11656 | 4.118066 |
0.485 | 0.141441 | 3.428998 |
0.495 | 0.20827 | 2.376718 |
0.5 | 0.252728 | 1.978408 |
0.505 | 0.306677 | 1.646686 |
0.51 | 0.372141 | 1.370449 |
0.515 | 0.451579 | 1.140443 |
0.52 | 0.547974 | 0.948949 |
0.525 | 0.664947 | 0.789537 |
0.53 | 0.806888 | 0.656844 |
0.535 | 0.979129 | 0.546404 |
0.54 | 1.188137 | 0.454493 |
0.545 | 1.44176 | 0.37801 |
0.55 | 1.749522 | 0.314372 |
0.555 | 2.122981 | 0.261425 |
0.56 | 2.576159 | 0.217378 |
0.565 | 3.126073 | 0.180738 |
0.57 | 3.793374 | 0.150262 |
0.575 | 4.603119 | 0.124915 |
0.58 | 5.585715 | 0.103836 |
0.585 | 6.778058 | 0.086308 |
0.59 | 8.224923 | 0.071733 |
0.595 | 9.98064 | 0.059615 |
0.6 | 12.11114 | 0.049541 |
From equation (1), formula to calculate the current across a semiconductor diode temperature
Here,
Substitute
Thus, the current across a semiconductor diode temperature
From equation (2), formula to calculate the resistance across the diode is,
Here,
Substitute
Thus, the resistance across the diode is
As the value of voltage across the diode varies from
Thus, a spreadsheet for
(Volts) |
(Amperes) |
|
0.4 | 0.002004 | 199.5582 |
0.405 | 0.002403 | 168.5349 |
0.41 | 0.002881 | 142.3127 |
0.415 | 0.003454 | 120.1526 |
0.42 | 0.004141 | 101.4283 |
0.425 | 0.004964 | 85.60991 |
0.43 | 0.005952 | 72.24847 |
0.435 | 0.007135 | 60.96416 |
0.44 | 0.008554 | 51.43551 |
0.445 | 0.010256 | 43.39059 |
0.45 | 0.012295 | 36.59933 |
0.455 | 0.014741 | 30.86719 |
0.46 | 0.017672 | 26.02967 |
0.465 | 0.021187 | 21.9477 |
0.47 | 0.0254 | 18.50372 |
0.475 | 0.030452 | 15.59839 |
0.48 | 0.036508 | 13.14778 |
0.485 | 0.043769 | 11.08098 |
0.495 | 0.062909 | 7.868498 |
0.5 | 0.07542 | 6.629515 |
0.505 | 0.09042 | 5.585066 |
0.51 | 0.108402 | 4.704703 |
0.515 | 0.129961 | 3.962729 |
0.52 | 0.155807 | 3.337456 |
0.525 | 0.186794 | 2.810585 |
0.53 | 0.223943 | 2.366674 |
0.535 | 0.26848 | 1.992698 |
0.54 | 0.321875 | 1.67767 |
0.545 | 0.385889 | 1.412324 |
0.55 | 0.462633 | 1.188846 |
0.555 | 0.554641 | 1.000647 |
0.56 | 0.664947 | 0.842173 |
0.565 | 0.79719 | 0.70874 |
0.57 | 0.955733 | 0.596401 |
0.575 | 1.145807 | 0.50183 |
0.58 | 1.373682 | 0.422223 |
0.585 | 1.646877 | 0.355218 |
0.59 | 1.974404 | 0.298824 |
0.595 | 2.367069 | 0.251366 |
0.6 | 2.837827 | 0.211429 |
Conclusion:
Therefore, a spreadsheet for
(Volts) |
(Amperes) |
|
0.4 | 0.015932 | 25.1067 |
0.405 | 0.019602 | 20.66116 |
0.41 | 0.024117 | 17.00046 |
0.415 | 0.029673 | 13.98578 |
0.42 | 0.036508 | 11.50433 |
0.425 | 0.044918 | 9.461686 |
0.43 | 0.055264 | 7.780834 |
0.435 | 0.067995 | 6.397529 |
0.44 | 0.083657 | 5.259572 |
0.445 | 0.102927 | 4.323453 |
0.45 | 0.126637 | 3.553464 |
0.455 | 0.155807 | 2.92028 |
0.46 | 0.191697 | 2.39962 |
0.465 | 0.235855 | 1.97155 |
0.47 | 0.290184 | 1.619662 |
0.475 | 0.357027 | 1.330432 |
0.48 | 0.439268 | 1.092727 |
0.485 | 0.540454 | 0.897394 |
0.495 | 0.818117 | 0.605048 |
0.5 | 1.006569 | 0.496737 |
0.505 | 1.238432 | 0.407774 |
0.51 | 1.523704 | 0.334711 |
0.515 | 1.874688 | 0.274712 |
0.52 | 2.306521 | 0.225448 |
0.525 | 2.837827 | 0.185001 |
0.53 | 3.491518 | 0.151796 |
0.535 | 4.295787 | 0.124541 |
0.54 | 5.285319 | 0.10217 |
0.545 | 6.502788 | 0.08381 |
0.55 | 8.000701 | 0.068744 |
0.555 | 9.843657 | 0.056381 |
0.56 | 12.11114 | 0.046238 |
0.565 | 14.90093 | 0.037917 |
0.57 | 18.33335 | 0.031091 |
0.575 | 22.55642 | 0.025492 |
0.58 | 27.75228 | 0.020899 |
0.585 | 34.145 | 0.017133 |
0.59 | 42.01028 | 0.014044 |
0.595 | 51.68732 | 0.011512 |
0.6 | 63.59346 | 0.009435 |
A spreadsheet for
(Volts) |
(Amperes) |
|
0.4 | 0.005274 | 75.84672 |
0.405 | 0.0064 | 63.28565 |
0.41 | 0.007766 | 52.79679 |
0.415 | 0.009423 | 44.03979 |
0.42 | 0.011435 | 36.72991 |
0.425 | 0.013876 | 30.62901 |
0.43 | 0.016838 | 25.53795 |
0.435 | 0.020432 | 21.29022 |
0.44 | 0.024793 | 17.74668 |
0.445 | 0.030086 | 14.79101 |
0.45 | 0.036508 | 12.32605 |
0.455 | 0.044301 | 10.27061 |
0.46 | 0.053758 | 8.556892 |
0.465 | 0.065233 | 7.128278 |
0.47 | 0.079158 | 5.937492 |
0.475 | 0.096055 | 4.945067 |
0.48 | 0.11656 | 4.118066 |
0.485 | 0.141441 | 3.428998 |
0.495 | 0.20827 | 2.376718 |
0.5 | 0.252728 | 1.978408 |
0.505 | 0.306677 | 1.646686 |
0.51 | 0.372141 | 1.370449 |
0.515 | 0.451579 | 1.140443 |
0.52 | 0.547974 | 0.948949 |
0.525 | 0.664947 | 0.789537 |
0.53 | 0.806888 | 0.656844 |
0.535 | 0.979129 | 0.546404 |
0.54 | 1.188137 | 0.454493 |
0.545 | 1.44176 | 0.37801 |
0.55 | 1.749522 | 0.314372 |
0.555 | 2.122981 | 0.261425 |
0.56 | 2.576159 | 0.217378 |
0.565 | 3.126073 | 0.180738 |
0.57 | 3.793374 | 0.150262 |
0.575 | 4.603119 | 0.124915 |
0.58 | 5.585715 | 0.103836 |
0.585 | 6.778058 | 0.086308 |
0.59 | 8.224923 | 0.071733 |
0.595 | 9.98064 | 0.059615 |
0.6 | 12.11114 | 0.049541 |
A spreadsheet for
(Volts) |
(Amperes) |
|
0.4 | 0.002004 | 199.5582 |
0.405 | 0.002403 | 168.5349 |
0.41 | 0.002881 | 142.3127 |
0.415 | 0.003454 | 120.1526 |
0.42 | 0.004141 | 101.4283 |
0.425 | 0.004964 | 85.60991 |
0.43 | 0.005952 | 72.24847 |
0.435 | 0.007135 | 60.96416 |
0.44 | 0.008554 | 51.43551 |
0.445 | 0.010256 | 43.39059 |
0.45 | 0.012295 | 36.59933 |
0.455 | 0.014741 | 30.86719 |
0.46 | 0.017672 | 26.02967 |
0.465 | 0.021187 | 21.9477 |
0.47 | 0.0254 | 18.50372 |
0.475 | 0.030452 | 15.59839 |
0.48 | 0.036508 | 13.14778 |
0.485 | 0.043769 | 11.08098 |
0.495 | 0.062909 | 7.868498 |
0.5 | 0.07542 | 6.629515 |
0.505 | 0.09042 | 5.585066 |
0.51 | 0.108402 | 4.704703 |
0.515 | 0.129961 | 3.962729 |
0.52 | 0.155807 | 3.337456 |
0.525 | 0.186794 | 2.810585 |
0.53 | 0.223943 | 2.366674 |
0.535 | 0.26848 | 1.992698 |
0.54 | 0.321875 | 1.67767 |
0.545 | 0.385889 | 1.412324 |
0.55 | 0.462633 | 1.188846 |
0.555 | 0.554641 | 1.000647 |
0.56 | 0.664947 | 0.842173 |
0.565 | 0.79719 | 0.70874 |
0.57 | 0.955733 | 0.596401 |
0.575 | 1.145807 | 0.50183 |
0.58 | 1.373682 | 0.422223 |
0.585 | 1.646877 | 0.355218 |
0.59 | 1.974404 | 0.298824 |
0.595 | 2.367069 | 0.251366 |
0.6 | 2.837827 | 0.211429 |
(b)
To draw: The graph for
(b)
Answer to Problem 80AP
The graph for
The graph for
The graph for
Explanation of Solution
Given information: The first symbol i.e. Euler’s number is
The different values of the
Thus, the graph for
The different values of the
Thus, the graph for
The different values of the
The graph for
Conclusion:
Therefore, the graph for
Therefore, the graph for
Therefore, the graph for
Want to see more full solutions like this?
Chapter 27 Solutions
Physics for Scientists and Engineers With Modern Physics
- Find the total capacitance in micro farads of the combination of capacitors shown in the figure below. HF 5.0 µF 3.5 µF №8.0 μLE 1.5 µF Ι 0.75 μF 15 μFarrow_forwardthe answer is not 0.39 or 0.386arrow_forwardFind the total capacitance in micro farads of the combination of capacitors shown in the figure below. 2.01 0.30 µF 2.5 µF 10 μF × HFarrow_forward
- I do not understand the process to answer the second part of question b. Please help me understand how to get there!arrow_forwardRank the six combinations of electric charges on the basis of the electric force acting on 91. Define forces pointing to the right as positive and forces pointing to the left as negative. Rank in increasing order by placing the most negative on the left and the most positive on the right. To rank items as equivalent, overlap them. ▸ View Available Hint(s) [most negative 91 = +1nC 92 = +1nC 91 = -1nC 93 = +1nC 92- +1nC 93 = +1nC -1nC 92- -1nC 93- -1nC 91= +1nC 92 = +1nC 93=-1nC 91 +1nC 92=-1nC 93=-1nC 91 = +1nC 2 = −1nC 93 = +1nC The correct ranking cannot be determined. Reset Help most positivearrow_forwardPart A Find the x-component of the electric field at the origin, point O. Express your answer in newtons per coulomb to three significant figures, keeping in mind that an x component that points to the right is positive. ▸ View Available Hint(s) Eoz = Η ΑΣΦ ? N/C Submit Part B Now, assume that charge q2 is negative; q2 = -6 nC, as shown in (Figure 2). What is the x-component of the net electric field at the origin, point O? Express your answer in newtons per coulomb to three significant figures, keeping in mind that an x component that points to the right is positive. ▸ View Available Hint(s) Eoz= Η ΑΣΦ ? N/Carrow_forward
- 1. A charge of -25 μC is distributed uniformly throughout a spherical volume of radius 11.5 cm. Determine the electric field due to this charge at a distance of (a) 2 cm, (b) 4.6 cm, and (c) 25 cm from the center of the sphere. (a) = = (b) E = (c)Ẻ = = NC NC NCarrow_forward1. A long silver rod of radius 3.5 cm has a charge of -3.9 ис on its surface. Here ŕ is a unit vector ст directed perpendicularly away from the axis of the rod as shown in the figure. (a) Find the electric field at a point 5 cm from the center of the rod (an outside point). E = N C (b) Find the electric field at a point 1.8 cm from the center of the rod (an inside point) E=0 Think & Prepare N C 1. Is there a symmetry in the charge distribution? What kind of symmetry? 2. The problem gives the charge per unit length 1. How do you figure out the surface charge density σ from a?arrow_forward1. Determine the electric flux through each surface whose cross-section is shown below. 55 S₂ -29 S5 SA S3 + 9 Enter your answer in terms of q and ε Φ (a) s₁ (b) s₂ = -29 (C) Φ զ Ερ (d) SA = (e) $5 (f) Sa $6 = II ✓ -29 S6 +39arrow_forward
- No chatgpt pls will upvotearrow_forwardthe cable may break and cause severe injury. cable is more likely to break as compared to the [1] ds, inclined at angles of 30° and 50° to the vertical rings by way of a scaled diagram. [4] I 30° T₁ 3cm 3.8T2 cm 200 N 50° at it is headed due North and its airspeed indicat 240 km/h. If there is a wind of 100 km/h from We e relative to the Earth? [3]arrow_forwardCan you explain this using nodal analysis With the nodes I have present And then show me how many KCL equations I need to write, I’m thinking 2 since we have 2 dependent sourcesarrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax