Physics
Physics
5th Edition
ISBN: 9781260486919
Author: GIAMBATTISTA
Publisher: MCG
bartleby

Concept explainers

Question
Book Icon
Chapter 27, Problem 74P

(a)

To determine

The stopping potential of incident light.

(a)

Expert Solution
Check Mark

Answer to Problem 74P

The stopping potential of incident light is 1.2V.

Explanation of Solution

Write the expression to find the maximum kinetic energy.

  Kmax=eVs                                                                                                             (I)

Here, Kmax is the maximum kinetic energy, Vs is the stopping potential.

Write the expression for Einstein’s photoelectric equation.

  Kmax=hcλϕ                                                                                                       (II)

Here, h is the plank’s constant, c is the speed of light in vacuum, λ is the wavelength of light, ϕ is the work function.

Equate equations (I) and (II) to find the work function for sodium.

  eVs=hcλϕ                                                                                                       (III)

Re-arrange the expression to find the work function for sodium.

  ϕ=hcλeVs

Substitute 1240eVnm for hc, 570nm for λ and 0.28V for Vs to find the work function for sodium.

  ϕ=1240eVnm570nme(0.28V)=2.18eV0.28eV=1.9eV

Re-arrange the equation (III) to find the stopping potential.

  Vs=hceλϕe

Conclusion:

Substitute 1240eVnm for hc, 400nm for λ and 1.9eV for ϕ to find the stopping potential.

  Vs=1240eVnme(400nm)1.9eVe=3.1V1.9V=1.2V

(b)

To determine

The stopping potential for the incident light when the intensity is 2.0W/m2.

(b)

Expert Solution
Check Mark

Answer to Problem 74P

The stopping potential for the incident light when the intensity 2.0W/m2 is 0.28V.

Explanation of Solution

Write the equation to find the stopping potential.

  Vs=hceλϕe

The stopping potential of incident light is independent on intensity of light as in the above expression. Thus, the stopping potential of light cannot be changed when the intensity of the light is increased from 1.0W/m2 to 2.0W/m2.

Conclusion:

The stopping potential of the incident light is 0.28V.

(c)

To determine

Work function if the sodium.

(c)

Expert Solution
Check Mark

Answer to Problem 74P

Work function if the sodium is 1.9eV.

Explanation of Solution

Write the expression to find the maximum kinetic energy.

  Kmax=eVs                                                                                                            (I)

Here, Kmax is the maximum kinetic energy, Vs is the stopping potential.

Write the expression for Einstein’s photoelectric equation.

  Kmax=hcλϕ                                                                                                       (II)

Here, h is the plank’s constant, c is the speed of light, λ is the wavelength of light, ϕ is the work function.

Equate equations (I) and (II) to find the work function for sodium.

  eVs=hcλϕ                                                                                                       (III)

Re-arrange the expression to find the work function for sodium.

  ϕ=hcλeVs

Conclusion:

Substitute 1240eVnm for hc, 570nm for λ and 0.28V for Vs to find the work function for sodium.

  ϕ=1240eVnm570nme(0.28V)=2.18eV0.28eV=1.9eV

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A ball is tied to one end of a string. The other end of the string is fixed. The ball is set in motion around a vertical circle without friction. At the top of the circle, the ball has a speed of ; = √√ Rg, as shown in the figure. At what angle should the string be cut so that the ball will travel through the center of the circle? The path after string is cut R
(a) A luggage carousel at an airport has the form of a section of a large cone, steadily rotating about its vertical axis. Its metallic surface slopes downward toward the outside, making an angle of 24.5° with the horizontal. A 30.0-kg piece of luggage is placed on the carousel, 7.46 m from the axis of rotation. The travel bag goes around once in 37.5 s. Calculate the magnitude of the force of static friction between the bag and the carousel. Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. N (b) The drive motor is shifted to turn the carousel at a higher constant rate of rotation, and the piece of luggage is bumped to a position 7.94 m from the axis of rotation. The bag is on the verge of slipping as it goes around once every 30.5 s. Calculate the coefficient of static friction between the bag and the carousel. Your response differs significantly from the correct answer. Rework your solution from the…
(a) Imagine that a space probe could be fired as a projectile from the Earth's surface with an initial speed of 5.78 x 104 m/s relative to the Sun. What would its speed be when it is very far from the Earth (in m/s)? Ignore atmospheric friction, the effects of other planets, and the rotation of the Earth. (Consider the mass of the Sun in your calculations.) Your response is within 10% of the correct value. This may be due to roundoff error, or you could have a mistake in your calculation. Carry out all intermediate results to at least four-digit accuracy to minimize roundoff error. m/s (b) What If? The speed provided in part (a) is very difficult to achieve technologically. Often, Jupiter is used as a "gravitational slingshot" to increase the speed of a probe to the escape speed from the solar system, which is 1.85 x 104 m/s from a point on Jupiter's orbit around the Sun (if Jupiter is not nearby). If the probe is launched from the Earth's surface at a speed of 4.10 x 10 m/s relative…

Chapter 27 Solutions

Physics

Ch. 27.7 - Prob. 27.7PPCh. 27.7 - Prob. 27.8PPCh. 27.8 - Prob. 27.9PPCh. 27 - Prob. 1CQCh. 27 - Prob. 2CQCh. 27 - Prob. 3CQCh. 27 - Prob. 4CQCh. 27 - Prob. 5CQCh. 27 - Prob. 6CQCh. 27 - Prob. 7CQCh. 27 - Prob. 8CQCh. 27 - Prob. 9CQCh. 27 - Prob. 10CQCh. 27 - Prob. 11CQCh. 27 - Prob. 12CQCh. 27 - Prob. 13CQCh. 27 - Prob. 14CQCh. 27 - Prob. 15CQCh. 27 - Prob. 16CQCh. 27 - Prob. 17CQCh. 27 - Prob. 18CQCh. 27 - Prob. 19CQCh. 27 - Prob. 20CQCh. 27 - Prob. 21CQCh. 27 - Prob. 22CQCh. 27 - Prob. 23CQCh. 27 - Prob. 1MCQCh. 27 - Prob. 2MCQCh. 27 - Prob. 3MCQCh. 27 - Prob. 4MCQCh. 27 - Prob. 5MCQCh. 27 - Prob. 6MCQCh. 27 - Prob. 7MCQCh. 27 - Prob. 8MCQCh. 27 - Prob. 9MCQCh. 27 - Prob. 10MCQCh. 27 - Prob. 1PCh. 27 - Prob. 2PCh. 27 - Prob. 3PCh. 27 - Prob. 4PCh. 27 - Prob. 5PCh. 27 - Prob. 6PCh. 27 - Prob. 7PCh. 27 - Prob. 8PCh. 27 - Prob. 9PCh. 27 - Prob. 10PCh. 27 - Prob. 11PCh. 27 - Prob. 12PCh. 27 - Prob. 13PCh. 27 - Prob. 14PCh. 27 - Prob. 15PCh. 27 - Prob. 16PCh. 27 - Prob. 17PCh. 27 - Prob. 18PCh. 27 - Prob. 19PCh. 27 - Prob. 20PCh. 27 - Prob. 21PCh. 27 - Prob. 22PCh. 27 - Prob. 23PCh. 27 - Prob. 24PCh. 27 - Prob. 25PCh. 27 - Prob. 26PCh. 27 - Prob. 27PCh. 27 - Prob. 28PCh. 27 - Prob. 29PCh. 27 - Prob. 30PCh. 27 - Prob. 31PCh. 27 - Prob. 32PCh. 27 - Prob. 33PCh. 27 - Prob. 34PCh. 27 - Prob. 35PCh. 27 - Prob. 36PCh. 27 - Prob. 37PCh. 27 - Prob. 38PCh. 27 - Prob. 39PCh. 27 - Prob. 40PCh. 27 - Prob. 41PCh. 27 - Prob. 42PCh. 27 - Prob. 43PCh. 27 - Prob. 44PCh. 27 - Prob. 45PCh. 27 - Prob. 46PCh. 27 - Prob. 47PCh. 27 - Prob. 48PCh. 27 - Prob. 49PCh. 27 - Prob. 50PCh. 27 - Prob. 51PCh. 27 - Prob. 52PCh. 27 - Prob. 53PCh. 27 - Prob. 54PCh. 27 - Prob. 55PCh. 27 - Prob. 56PCh. 27 - Prob. 57PCh. 27 - Prob. 58PCh. 27 - Prob. 59PCh. 27 - Prob. 61PCh. 27 - Prob. 60PCh. 27 - Prob. 62PCh. 27 - Prob. 64PCh. 27 - Prob. 63PCh. 27 - Prob. 66PCh. 27 - Prob. 65PCh. 27 - Prob. 68PCh. 27 - Prob. 67PCh. 27 - Prob. 70PCh. 27 - Prob. 69PCh. 27 - Prob. 72PCh. 27 - Prob. 71PCh. 27 - Prob. 74PCh. 27 - Prob. 73PCh. 27 - Prob. 75PCh. 27 - Prob. 76PCh. 27 - Prob. 77PCh. 27 - Prob. 78PCh. 27 - Prob. 79PCh. 27 - Prob. 80PCh. 27 - Prob. 82PCh. 27 - Prob. 81PCh. 27 - Prob. 84PCh. 27 - Prob. 83PCh. 27 - Prob. 86PCh. 27 - Prob. 85PCh. 27 - Prob. 88PCh. 27 - Prob. 87PCh. 27 - Prob. 89PCh. 27 - Prob. 90PCh. 27 - Prob. 91PCh. 27 - Prob. 92PCh. 27 - Prob. 93PCh. 27 - Prob. 94PCh. 27 - Prob. 95PCh. 27 - Prob. 96P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON