EBK PHYSICS
5th Edition
ISBN: 8220103026918
Author: Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 27, Problem 69PCE
A grade school student plans to build a 35-power telescope as a science fair project. She starts with a magnifying glass with a total length of 7.5 cm as the eyepiece. What focal length is needed for her objective lens?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A typical hobby telescope has an objective lens with a 700 mm focal length and an eyepiece with a 25 mm focal length. The moon has an angularsize of about 0.5° when viewed without optical aid. What angle does the moon subtend in the telescope?
Problem 8: The objective lens of the refracting telescope at the Lick Observatory in
California has a focal length of 57 ft.
a. What is the refractive power of this lens?
b. What focal length (mm) eyepiece would give a magnification of 1000X for this
telescope?
A camera is used to photograph the full moon, which has an angular diameter of 0.51°. The image on the film is 3.2 mm in diameter. What is the focal length of the lens?
Chapter 27 Solutions
EBK PHYSICS
Ch. 27.1 - If the f -number on a camera is increased does the...Ch. 27.2 - Prob. 2EYUCh. 27.3 - A magnifying glass is held over a ruled piece of...Ch. 27.4 - Rank the following microscopes in order of...Ch. 27.5 - In a typical telescope, is foppose greater than,...Ch. 27.6 - One advantage of reflecting telescopes over...Ch. 27 - Prob. 1CQCh. 27 - Prob. 2CQCh. 27 - If your near-point distance is N, how close can...Ch. 27 - When you open your eyes underwater, everything...
Ch. 27 - When you use a simple magnifying glass, does it...Ch. 27 - Does chromatic aberration occur in mirrors?...Ch. 27 - BIO Predict/Explain Octopus Eyes To focus its...Ch. 27 - Your friend is 1.7 m tall. (a) When she stands 3.2...Ch. 27 - Which forms the larger image on the retina of your...Ch. 27 - Approximating the eye as a single thin lens 2.70...Ch. 27 - Approximating the eye as a single thin lens 2.70...Ch. 27 - Find the far-point distance of a person whose...Ch. 27 - Four camera lenses have the following focal...Ch. 27 - BIO The focal length of the human eye is...Ch. 27 - Predict/Calculate A camera with a...Ch. 27 - The actual light sensor size of a digital camera...Ch. 27 - (a) Find the f -number of a telescope with an...Ch. 27 - You are taking a photo of a poster on the wall of...Ch. 27 - You are taking pictures of the beach at sunset...Ch. 27 - Predict/Calculate You are taking a photograph of a...Ch. 27 - The Hale Telescope The 200-in. (5.08-m) diameter...Ch. 27 - Predict/Explain Two professors are stranded on a...Ch. 27 - A clerk at the local grocery store wears glasses...Ch. 27 - The umpire at a baseball game wears glasses that...Ch. 27 - A police detective discovers eyeglasses with a...Ch. 27 - BIO The cornea of a normal human eye has an...Ch. 27 - A myopic student is shaving without his glasses....Ch. 27 - An eyeglass prescription calls for a lens with an...Ch. 27 - An optometrist prescribes contact lenses with a...Ch. 27 - Two thin lenses, with f1 = +25.0 cm and f2 = 42.5...Ch. 27 - Two concave lenses, each with f = 15 cm, are...Ch. 27 - BIO Predict/Calculate The focal length of a...Ch. 27 - BIO Predict/Calculate Diopter Change in Diving...Ch. 27 - A converging lens of focal length 9,000 cm is 18.0...Ch. 27 - Repeat Problem 28, this time with the coin placed...Ch. 27 - Find the focal length of contact lenses that would...Ch. 27 - Find the focal length of contact lenses that would...Ch. 27 - What focal length should a pair of contact lenses...Ch. 27 - Reading glasses with a power of + 1.50 diopters...Ch. 27 - A nearsighted person wears contacts with a focal...Ch. 27 - Without his glasses, Isaac can see objects clearly...Ch. 27 - A person whose near-point distance is 42.5 cm...Ch. 27 - A pair of eyeglasses is designed to allow a person...Ch. 27 - Predict/Calculate Your favorite aunt can read a...Ch. 27 - Predict/Calculate The relaxed eyes of a patient...Ch. 27 - Without glasses, your Uncle Albert can see things...Ch. 27 - A 2.05-cm-tall object is placed 30.0 cm to the...Ch. 27 - A simple camera telephoto lens consists of two...Ch. 27 - Predict/Calculate With unaided vision, a librarian...Ch. 27 - A persons prescription for her new bifocal glasses...Ch. 27 - A persons prescription for his new bifocal...Ch. 27 - Two lenses, with f1 = +20.0 cm and f2 = +30.0 cm,...Ch. 27 - A converging lens with a focal length of 4.0 cm is...Ch. 27 - Two magnifying glasses are for sale at a store....Ch. 27 - The Moon is 3476 km in diameter and orbits the...Ch. 27 - A magnifying glass is a single convex lens with a...Ch. 27 - Calculate the focal length of a magnifying lens...Ch. 27 - Predict/Calculate A student has two lenses, one of...Ch. 27 - A beetle 4.93 mm long is examined with a simple...Ch. 27 - To engrave wishes of good luck on a watch, an...Ch. 27 - A jeweler examines a diamond with a magnifying...Ch. 27 - In Problem 55, find the angular magnification when...Ch. 27 - Prob. 57PCECh. 27 - You have two lenses: lens 1 with a focal length of...Ch. 27 - Predict/Calculate Microscope objective A is...Ch. 27 - A compound microscope has an objective lens with a...Ch. 27 - BIO A typical red blood cell subtends an angle of...Ch. 27 - (a) If you treat a 10x eyepiece of a microscope as...Ch. 27 - The medium-power objective lens in a laboratory...Ch. 27 - A compound microscope has the objective and...Ch. 27 - The barrel of a compound microscope is 15 cm in...Ch. 27 - A compound microscope uses a 75.0-mm lens as the...Ch. 27 - The tube length of a microscope is defined to be...Ch. 27 - Two telescopes of different lengths produce the...Ch. 27 - A grade school student plans to build a 35-power...Ch. 27 - A 75-power refracting telescope has an eyepiece...Ch. 27 - An amateur astronomer wants to build a small...Ch. 27 - A pirate sights a distant ship with a spyglass...Ch. 27 - A telescope has lenses with focal lengths f1 =...Ch. 27 - Jason has a 25-power telescope whose objective...Ch. 27 - Roughing It with Science A professor shipwrecked...Ch. 27 - Galileos Telescope Galileos first telescope used a...Ch. 27 - The Moon has an angular size of 0 50 when viewed...Ch. 27 - A telescope is 275 mm long and has an objective...Ch. 27 - The focal length for light that strikes near the...Ch. 27 - The focal length for red light that strikes a...Ch. 27 - BIO Predict/Explain Intracorneal Ring An...Ch. 27 - CE BIO The lens in a normal human eye, with...Ch. 27 - CE BIO Predict/Explain Treating Cataracts When the...Ch. 27 - Galileos original telescope (Figure 27-29) used a...Ch. 27 - Predict/Calculate For each of the following cases,...Ch. 27 - Predict/Calculate You have two lenses, with focal...Ch. 27 - BIO The eye is actually a multiple-lens system,...Ch. 27 - BIO Fitting Contact Lenses with a Keratometer When...Ch. 27 - Pricey Stamp A rare 1918 Jenny stamp, depicting a...Ch. 27 - Prob. 90GPCh. 27 - Consider a Galilean telescope, as illustrated in...Ch. 27 - A farsighted person uses glasses with a refractive...Ch. 27 - Landing on an Aircraft Carrier The Fresnel Lens...Ch. 27 - A Cassegrain astronomical telescope uses two...Ch. 27 - Predict/Calculate A convex Ions (f = 20.0 cm) is...Ch. 27 - The diameter of a collimated laser beam can be...Ch. 27 - Consider three lenses with focal lengths of 25.0...Ch. 27 - Because a concave lens cannot form a real image of...Ch. 27 - A person with a near-point distance N uses a...Ch. 27 - Prob. 100GPCh. 27 - Prob. 101PPCh. 27 - Prob. 102PPCh. 27 - Prob. 103PPCh. 27 - Predict/Calculate Referring to Example 27-4...Ch. 27 - Predict/Calculate Referring to Example 27-4 in...Ch. 27 - Predict/Calculate Referring to Example 27-4 In...Ch. 27 - Predict/Calculate Referring to Example 27-6...Ch. 27 - Predict/Calculate Referring to Example 27-6...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Explain how you can determine whether fault N is older or younger than igneous intrusion J.
Applications and Investigations in Earth Science (9th Edition)
5. When the phenotype of heterozygotes is intermediate between the phenotypes of the two homozygotes, this patt...
Biology: Life on Earth (11th Edition)
Why are the top predators in food chains most severely affected by pesticides such as DDT?
Campbell Essential Biology (7th Edition)
1. Why is the quantum-mechanical model of the atom important for understanding chemistry?
Chemistry: Structure and Properties (2nd Edition)
Identify each of the following reproductive barriers as prezygotic or postzygotic. a. One lilac species lives o...
Campbell Essential Biology with Physiology (5th Edition)
Why is petroleum jelly used in the hanging-drop procedure?
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What is the magnification of a magnifying lens with a focal length of 10 cm if it is held 3.0 cm from the eye and the object is 12 cm from the eye?arrow_forwardA group of students is given two converging lenses. Lens A has a focal length of 12.5 cm, and lens B has a focal length of 50.0 cm. The diameter of each lens is 6.50 cm. The students are asked to construct a microscope from these lenses that has the same magnification as the telescope in Problem 80 if possible, and they have this discussion: Avi: These are the same lenses we used to make a telescope. So they wont work as a microscope. Microscopes are for looking at close objects; telescopes are for looking at far objects. Cameron: All you need for a microscope are two converging lenses. I think the difference from a telescope is just that the order of the lenses is switched. A microscope is just a backward telescope. Shannon: I think the order of the lenses doesnt matter because the magnification is inversely proportional to both focal lengths. I think we have to adjust the distance between the lenses. a. What do you think? b. If a microscope can be constructed with these two lenses, describe its design. What is the minimum separation of the lenses? Where must you place the object?arrow_forwardWhat will be the angular magnification of a convex lens with the focal length 2.5 cm?arrow_forward
- In Figure P26.38, a thin converging lens of focal length 14.0 cm forms an image of the square abcd, which is hc = hb = 10.0 cm high and lies between distances of pd = 20.0 cm and pa = 30.0 cm from the lens. Let a, b, c, and d represent the respective corners of the image. Let qa represent the image distance for points a and b, qd represent the image distance for points c and d, hb represent the distance from point b to the axis, and hc represent the height of c. (a) Find qa, qd, hb, and hc. (b) Make a sketch of the image. (c) The area of the object is 100 cm2. By carrying out the following steps, you will evaluate the area of the image. Let q represent the image distance of any point between a and d, for which the object distance is p. Let h represent the distance from the axis to the point at the edge of the image between b and c at image distance q. Demonstrate that h=10.0q(114.01q) where h and q are in centimeters. (d) Explain why the geometric area of the image is given by qaqdhdq (e) Carry out the integration to find the area of the image. Figure P26.38arrow_forwardWhat will be the formula for the angular magnification of a convex lens of focal length f if the eye is very close to the lens and the near point is located a distance D from the eye?arrow_forwardA converging lens made of crown glass has a focal length of 15.0 cm when used in air. If the lens is immersed in water, what is its focal length? (a) negative (b) less than 15.0 cm (c) equal to 15.0 cm (d) greater than 15.0 cm (e) none of those answersarrow_forward
- In Figure P35.30, a thin converging lens of focal length 14.0 cm forms an image of the square abed, which is he = hb = 10.0 cm high and lies between distances of pd = 20.0 cm and pa = 30.0 cm from the lens. Let a, b, c. and d represent the respective corners of the image. Let qa represent the image distance for points a and b, qd represent the image distance for points c and d, hb, represent the distance from point b to the axis, and hc represent the height of c. (a) Find qa, qd, hb, and hc. (b) Make a sketch of the image. (c) The area of the object is 100 cm2. By carrying out the following steps, you will evaluate the area of the image. Let q represent the image distance of any point between a and d, for which the object distance is p. Let h represent the distance from the axis to the point at the edge of the image between b and c at image distance q. Demonstrate that h=10.0q(114.01q) where h and q are in centimeters. (d) Explain why the geometric area of the image is given by qaqdhdq (e) Carry out the integration to find the area of the image. Figure P35.30arrow_forwardWhat is the angular magnification of a telescope that has a 100 cm-focal length objective and a 2.50 cm-focal length eyepiece?arrow_forwardTwo stars that are 109km apart are viewed by a telescope and found to be separated by an angle of 105 radians. If the eyepiece of the telescope has a focal length of 1.5 cm and the objective has a focal length of 3 meters, how far away are the stars from the observer?arrow_forward
- A 7.5 binocular produces an angular magnification of —7.50, acting like a telescope. (Mirrors are used to make the image upright.) If the binoculars have objective lenses with a 75.0-cm focal length, what is the focal length of the eyepiece lenses?arrow_forwardWhy is the following situation impossible? Consider the lensmirror combination shown in Figure P35.55. The lens has a focal length of fL = 0.200 m, and the mirror has a focal length of fM = 0.500 m. The lens and mirror are placed a distance d = 1.30 m apart, and an object is placed at p = 0.300 m from the lens. By moving a screen to various positions to the left of the lens, a student finds two different positions of the screen that produce a sharp image of the object. One of these positions corresponds to light leaving the object and traveling to the left through the lens. The other position corresponds to light traveling to the right from the object, reflecting from the mirror and then passing through the lens. Figure P35.55 Problem 55 and 57.arrow_forward30. A friend who is an education major is working on a project for a science-teaching class. She wants her students to make a simple camera with just one lens. She will use a single converging lens. The lens to focal plane distance will be 4.77 cm and the lens to object distance is 80 cm. What focal length lens should she use?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY