COLLEGE PHYSICS-ACHIEVE AC (1-TERM)
COLLEGE PHYSICS-ACHIEVE AC (1-TERM)
3rd Edition
ISBN: 9781319453916
Author: Freedman
Publisher: MAC HIGHER
bartleby

Concept explainers

Question
Book Icon
Chapter 27, Problem 59QAP
To determine

The net energy released from the given steps.

Expert Solution & Answer
Check Mark

Answer to Problem 59QAP

The net energy released from all three steps is 26.73 MeV

Explanation of Solution

Calculation:

Mass of 1H = 1.0078251 amu

Mass of Deuterium (2H) = 2.010412 amu

Mass of positron = 0.0005486 amu

Now, the 1st step of the reaction splits into two steps
  1H + 1H H22e + γ

Followed by a beta-plus decay
  H22e H12 + e+ + νe

The mass deficit reaction for the 1st step should look like
  M.D.(Δm) = 2mH  mD  me+

But if you look at your first reaction, you are starting with two 1H's (1 electron in each atomic mass) and going to one 2H (1 electron in its atomic mass). So, now when you subtract the initial and final atomic masses, the electrons do not cancel. Hence, you must account for the extra electron in the equation as well.
This gives us the following equation
  M.D.= 2mH  mD  me+  me

  M.D.=2(1.0078251)2.0104120.00054860.0005486=0.000451 amu

The energy from 1 amu mass deficit is 931.5 MeVamu

The energy for this mass deficit can be calculated to be
  E11 = 0.000451×931.5=0.42 MeV

The positron and the electron emitted in step-1, immediately interact and annihilate each other.

  e+ + e  γ +γ

The mass deficit for this is
  M.D.=me+ + me = 2×0.0005486=0.0010972 amu

Energy released due to this mass deficit is
  E12 = 0.0010972×931.5 = 1.022 MeV

For Step 2
  2H + 1H  3He + γ

To calculate the energy released in this reaction we take the difference between the binding energies of 3He and 2H.

  BE(3He) = 7.718 MeV

  BE(2H) = 2.225 MeV

The energy released in this reaction,
  E2 = BE(3He)  BE(2H) = 7.718  2.225 = 5.493 MeV

For Step 3
  3He + 3He 4He + 21H + γ

The energy of this reaction is the difference between the binding energies of 4He and the two 3He atoms.

  BE(4He)=28.296 MeV

The energy released for this step is
  E3 =BE(4He)2BE(3He) =28.2962×7.718 =12.86 MeV

Now, we have the energies from all the three steps
Step-1 and Step-2 need to occur twice in order to prepare 2 3He molecules, which interact and form 4He.

So, the net energy of the proton-proton cycle is
  E = 2E11+2E12+2E2+E3=2×0.42+2×1.022+2×5.493+12.86 =26.73 MeV

Hence, the net energy released from all three steps is 26.73 MeV

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
For each part make sure to include sign to represent direction, with up being positive and down being negative. A ball is thrown vertically upward with a speed of 30.5 m/s. A) How high does it rise? y= B) How long does it take to reach its highest point? t= C) How long does it take the ball return to its starting point after it reaches its highest point? t= D) What is its velocity when it returns to the level from which it started? v=
Four point charges of equal magnitude Q = 55 nC are placed on the corners of a rectangle of sides D1 = 27 cm and D2 = 11cm. The charges on the left side of the rectangle are positive while the charges on the right side of the rectangle are negative. Use a coordinate system where the positive y-direction is up and the positive x-direction is to the right. A. Which of the following represents a free-body diagram for the charge on the lower left hand corner of the rectangle? B. Calculate the horizontal component of the net force, in newtons, on the charge which lies at the lower left corner of the rectangle.Numeric   : A numeric value is expected and not an expression.Fx = __________________________________________NC. Calculate the vertical component of the net force, in newtons, on the charge which lies at the lower left corner of the rectangle.Numeric   : A numeric value is expected and not an expression.Fy = __________________________________________ND. Calculate the magnitude of the…
Point charges q1=50.0μC and q2=-35μC are placed d1=1.0m apart, as shown. A. A third charge, q3=25μC, is positioned somewhere along the line that passes through the first two charges, and the net force on q3 is zero. Which statement best describes the position of this third charge?1)  Charge q3 is to the right of charge q2. 2)  Charge q3 is between charges q1 and q2. 3)  Charge q3 is to the left of charge q1. B. What is the distance, in meters, between charges q1 and q3? (Your response to the previous step may be used to simplify your solution.)Give numeric value.d2 = __________________________________________mC. Select option that correctly describes the change in the net force on charge q3 if the magnitude of its charge is increased.1)  The magnitude of the net force on charge q3 would still be zero. 2)  The effect depends upon the numeric value of charge q3. 3)  The net force on charge q3 would be towards q2. 4)  The net force on charge q3 would be towards q1. D. Select option that…

Chapter 27 Solutions

COLLEGE PHYSICS-ACHIEVE AC (1-TERM)

Ch. 27 - Prob. 11QAPCh. 27 - Prob. 12QAPCh. 27 - Prob. 13QAPCh. 27 - Prob. 14QAPCh. 27 - Prob. 15QAPCh. 27 - Prob. 16QAPCh. 27 - Prob. 17QAPCh. 27 - Prob. 18QAPCh. 27 - Prob. 19QAPCh. 27 - Prob. 20QAPCh. 27 - Prob. 21QAPCh. 27 - Prob. 22QAPCh. 27 - Prob. 23QAPCh. 27 - Prob. 24QAPCh. 27 - Prob. 25QAPCh. 27 - Prob. 26QAPCh. 27 - Prob. 27QAPCh. 27 - Prob. 28QAPCh. 27 - Prob. 29QAPCh. 27 - Prob. 30QAPCh. 27 - Prob. 31QAPCh. 27 - Prob. 32QAPCh. 27 - Prob. 33QAPCh. 27 - Prob. 34QAPCh. 27 - Prob. 35QAPCh. 27 - Prob. 36QAPCh. 27 - Prob. 37QAPCh. 27 - Prob. 38QAPCh. 27 - Prob. 39QAPCh. 27 - Prob. 40QAPCh. 27 - Prob. 41QAPCh. 27 - Prob. 42QAPCh. 27 - Prob. 43QAPCh. 27 - Prob. 44QAPCh. 27 - Prob. 45QAPCh. 27 - Prob. 46QAPCh. 27 - Prob. 47QAPCh. 27 - Prob. 48QAPCh. 27 - Prob. 49QAPCh. 27 - Prob. 50QAPCh. 27 - Prob. 51QAPCh. 27 - Prob. 52QAPCh. 27 - Prob. 53QAPCh. 27 - Prob. 54QAPCh. 27 - Prob. 55QAPCh. 27 - Prob. 56QAPCh. 27 - Prob. 57QAPCh. 27 - Prob. 58QAPCh. 27 - Prob. 59QAPCh. 27 - Prob. 60QAPCh. 27 - Prob. 61QAPCh. 27 - Prob. 62QAPCh. 27 - Prob. 63QAPCh. 27 - Prob. 64QAPCh. 27 - Prob. 65QAPCh. 27 - Prob. 66QAPCh. 27 - Prob. 67QAPCh. 27 - Prob. 68QAPCh. 27 - Prob. 69QAPCh. 27 - Prob. 70QAPCh. 27 - Prob. 71QAPCh. 27 - Prob. 72QAPCh. 27 - Prob. 73QAPCh. 27 - Prob. 74QAPCh. 27 - Prob. 75QAPCh. 27 - Prob. 76QAPCh. 27 - Prob. 77QAPCh. 27 - Prob. 78QAPCh. 27 - Prob. 79QAPCh. 27 - Prob. 80QAPCh. 27 - Prob. 81QAPCh. 27 - Prob. 82QAPCh. 27 - Prob. 83QAPCh. 27 - Prob. 84QAPCh. 27 - Prob. 85QAPCh. 27 - Prob. 86QAPCh. 27 - Prob. 87QAPCh. 27 - Prob. 88QAPCh. 27 - Prob. 89QAPCh. 27 - Prob. 90QAPCh. 27 - Prob. 91QAPCh. 27 - Prob. 92QAPCh. 27 - Prob. 93QAPCh. 27 - Prob. 94QAPCh. 27 - Prob. 95QAPCh. 27 - Prob. 96QAPCh. 27 - Prob. 97QAP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Inquiry into Physics
Physics
ISBN:9781337515863
Author:Ostdiek
Publisher:Cengage