Principles of Physics: A Calculus-Based Text, Hybrid (with Enhanced WebAssign Printed Access Card)
Principles of Physics: A Calculus-Based Text, Hybrid (with Enhanced WebAssign Printed Access Card)
5th Edition
ISBN: 9781305586871
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 27, Problem 47P

(a)

To determine

The wavelengths of the light.

(a)

Expert Solution
Check Mark

Answer to Problem 47P

The wavelengths of light are 487.52nm , 658.41nm and 710.14nm at spectral angles of 10.1° , 13.7° and 14.8° respectively.

Explanation of Solution

Given info: Angles of spectral lines are 10.1° , 13.7° and 14.8° , Slits on the grating are 3600slits/cm .

The width of slit can be given as,

d=1N

Here,

N is the number of slits per length.

d is the width of the slit.

Substitute 3600slits/cm for N in the above equation,

d=13600slits/cm=(2.78×104cm)(1m100cm)=2.78×106m

The condition for first order diffraction grating can be given as,

λ=dsinθ (1)

Here,

θ is the angle of spectral line.

λ is the wavelength of light.

For the angle of 10.1° :

Substitute 2.78×106m for d , λ1 for λ and 10.1° for θ in the equation (1),

λ1=(2.78×106m)(sin10.1°)=487.52×109m=487.52nm

Thus, the wavelength of the light is 487.52nm at angle of 10.1° .

For the angle of 13.7° :

Substitute 2.78×106m for d , λ2 for λ and 13.7° for θ in the equation (1),

λ2=(2.78×106m)(sin13.7°)=658.41×109m=658.41nm

Thus, the wavelength of the light is 658.41nm at angle of 13.7° .

For the angle of 14.8° :

Substitute 2.78×106m for d , λ3 for λ and 14.8° for θ in the equation (1),

λ3=(2.78×106m)(sin14.8°)=710.14×109m=710.14nm

Thus, the wavelength of the light is 710.14nm at angle of 14.8° .

Conclusion:

Therefore, the wavelengths of light are 487.52nm , 658.41nm and 710.14nm at spectral angles of 10.1° , 13.7° and 14.8° respectively.

(b)

To determine

The angles for the lines in the second order spectrum.

(b)

Expert Solution
Check Mark

Answer to Problem 47P

The angles for the second order lines are 20.53° , 28.27° and 30.72° for the wavelengths of 487.52nm , 658.41nm and 710.14nm respectively.

Explanation of Solution

Given info: Angles of spectral lines are 10.1° , 13.7° and 14.8° , Slits on the grating are 3600slits/cm .

The condition for first order diffraction grating can be given as,

dsinθ=2λ (1)

θ is the angle of spectral line.

λ is the wavelength of light.

Rearrange the above equation for θ ,

θ=sin1(2λd) (2)

For the wavelength 487.52nm :

Substitute 2.78×106m for d , 487.52×109m for λ and θ1 for θ in the equation (2),

Principles of Physics: A Calculus-Based Text, Hybrid (with Enhanced WebAssign Printed Access Card), Chapter 27, Problem 47P , additional homework tip  1 θ1=sin1(2(487.52×109m)(2.78×106m))=20.53°

Thus, the angle of the spectral line is 20.53° for wavelength of 487.52nm .

For the wavelength 658.41nm :

Substitute 2.78×106m for d , 658.41×109m for λ and θ2 for θ in the equation (2),

Principles of Physics: A Calculus-Based Text, Hybrid (with Enhanced WebAssign Printed Access Card), Chapter 27, Problem 47P , additional homework tip  2 θ2=sin1(2(658.41×109m)(2.78×106m))=28.27°

Thus, the angle of the spectral line is 28.27° for wavelength of 658.41nm .

For the wavelength 710.14nm :

Substitute 2.78×106m for d , 710.14×109m for λ and θ3 for θ in the equation (2),

Principles of Physics: A Calculus-Based Text, Hybrid (with Enhanced WebAssign Printed Access Card), Chapter 27, Problem 47P , additional homework tip  3 θ3=sin1(2(710.14×109m)(2.78×106m))=30.72°

Thus, the angle of the spectral line is 30.72° for wavelength of 710.14nm .

Conclusion:

Therefore, the angles of lines are 20.53° , 28.27° and 30.72° for the wavelengths of 487.52nm , 658.41nm and 710.14nm respectively.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
ՍՈՈՒ XVirginia Western Community Coll x P Course Home X + astering.pearson.com/?courseld=13289599#/ Figure y (mm) x=0x = 0.0900 m All ✓ Correct For either the time for one full cycle is 0.040 s; this is the period. Part C - ON You are told that the two points x = 0 and x = 0.0900 m are within one wavelength of each other. If the wave is moving in the +x-direction, determine the wavelength. Express your answer to two significant figures and include the appropriate units. 0 t(s) λ = Value m 0.01 0.03 0.05 0.07 Copyright © 2025 Pearson Education Inc. All rights reserved. 日 F3 F4 F5 1775 % F6 F7 B F8 Submit Previous Answers Request Answer ? × Incorrect; Try Again; 3 attempts remaining | Terms of Use | Privacy Policy | Permissions | Contact Us | Cookie Settings 28°F Clear 4 9:23 PM 1/20/2025 F9 prt sc F10 home F11 end F12 insert delete 6 7 29 & * ( 8 9 0 t = back Ο
Part C Find the height yi from which the rock was launched. Express your answer in meters to three significant figures.                                     Learning Goal: To practice Problem-Solving Strategy 4.1 for projectile motion problems. A rock thrown with speed 12.0 m/s and launch angle 30.0 ∘ (above the horizontal) travels a horizontal distance of d = 19.0 m before hitting the ground. From what height was the rock thrown? Use the value g = 9.800 m/s2 for the free-fall acceleration.     PROBLEM-SOLVING STRATEGY 4.1 Projectile motion problems MODEL: Is it reasonable to ignore air resistance? If so, use the projectile motion model. VISUALIZE: Establish a coordinate system with the x-axis horizontal and the y-axis vertical. Define symbols and identify what the problem is trying to find. For a launch at angle θ, the initial velocity components are vix=v0cosθ and viy=v0sinθ. SOLVE: The acceleration is known: ax=0 and ay=−g. Thus, the problem becomes one of…
Phys 25

Chapter 27 Solutions

Principles of Physics: A Calculus-Based Text, Hybrid (with Enhanced WebAssign Printed Access Card)

Ch. 27 - Prob. 5OQCh. 27 - Prob. 6OQCh. 27 - A monochromatic beam of light of wavelength 500 nm...Ch. 27 - A film of oil on a puddle in a parking lot shows a...Ch. 27 - Prob. 9OQCh. 27 - A Fraunhofer diffraction pattern is produced on a...Ch. 27 - Prob. 11OQCh. 27 - Prob. 12OQCh. 27 - Why is it advantageous to use a large-diameter...Ch. 27 - Prob. 1CQCh. 27 - Prob. 2CQCh. 27 - Prob. 3CQCh. 27 - Prob. 4CQCh. 27 - Why is the lens on a good-quality camera coated...Ch. 27 - Prob. 6CQCh. 27 - Prob. 7CQCh. 27 - Prob. 8CQCh. 27 - A laser beam is incident at a shallow angle on a...Ch. 27 - Prob. 10CQCh. 27 - Prob. 11CQCh. 27 - Prob. 12CQCh. 27 - John William Strutt, Lord Rayleigh (1842–1919),...Ch. 27 - Prob. 1PCh. 27 - Youngs double-slit experiment underlies the...Ch. 27 - Two radio antennas separated by d = 300 m as shown...Ch. 27 - Prob. 4PCh. 27 - Prob. 5PCh. 27 - Prob. 6PCh. 27 - In Figure P27.7 (not to scale), let L = 1.20 m and...Ch. 27 - Prob. 8PCh. 27 - Prob. 9PCh. 27 - Prob. 10PCh. 27 - Two slits are separated by 0.180 mm. An...Ch. 27 - Prob. 12PCh. 27 - A pair of narrow, parallel slits separated by...Ch. 27 - Coherent light rays of wavelength strike a pair...Ch. 27 - Prob. 15PCh. 27 - Prob. 16PCh. 27 - A riverside warehouse has several small doors...Ch. 27 - Prob. 18PCh. 27 - Prob. 19PCh. 27 - Astronomers observe the chromosphere of the Sun...Ch. 27 - Prob. 21PCh. 27 - Prob. 22PCh. 27 - A beam of 580-nm light passes through two closely...Ch. 27 - Prob. 24PCh. 27 - An air wedge is formed between two glass plates...Ch. 27 - Prob. 26PCh. 27 - Prob. 27PCh. 27 - Prob. 28PCh. 27 - Prob. 29PCh. 27 - Prob. 30PCh. 27 - Prob. 31PCh. 27 - Prob. 32PCh. 27 - A beam of monochromatic green light is diffracted...Ch. 27 - Prob. 34PCh. 27 - Prob. 35PCh. 27 - Prob. 36PCh. 27 - Prob. 37PCh. 27 - Prob. 38PCh. 27 - Prob. 39PCh. 27 - White light is spread out into its spectral...Ch. 27 - Prob. 41PCh. 27 - Prob. 42PCh. 27 - Prob. 43PCh. 27 - Prob. 44PCh. 27 - Prob. 45PCh. 27 - Prob. 46PCh. 27 - Prob. 47PCh. 27 - Prob. 48PCh. 27 - Prob. 49PCh. 27 - Prob. 50PCh. 27 - Prob. 51PCh. 27 - A wide beam of laser light with a wavelength of...Ch. 27 - Prob. 53PCh. 27 - Prob. 54PCh. 27 - Prob. 55PCh. 27 - Prob. 56PCh. 27 - Prob. 57PCh. 27 - Prob. 58PCh. 27 - Prob. 59PCh. 27 - Prob. 60PCh. 27 - Prob. 61PCh. 27 - Prob. 62PCh. 27 - Both sides of a uniform film that has index of...Ch. 27 - Prob. 64PCh. 27 - Light of wavelength 500 nm is incident normally on...Ch. 27 - Prob. 66PCh. 27 - A beam of bright red light of wavelength 654 nm...Ch. 27 - Iridescent peacock feathers are shown in Figure...Ch. 27 - Prob. 69PCh. 27 - Prob. 70PCh. 27 - Figure CQ27.4 shows an unbroken soap film in a...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Diffraction of light animation best to understand class 12 physics; Author: PTAS: Physics Tomorrow Ambition School;https://www.youtube.com/watch?v=aYkd_xSvaxE;License: Standard YouTube License, CC-BY