
Essential University Physics
4th Edition
ISBN: 9780134988566
Author: Wolfson, Richard
Publisher: Pearson Education,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 27, Problem 46P
You’re an electrical engineer designing an alternator (the generator that charges a car’s battery). Mechanical engineers specify a 10-cm-diameter rotating coil, and you determine that you can fit 250 turns in this coil. To charge a 12-V battery, you need a peak output of 14 V when the alternator is rotating at 1200 rpm. What do you specify for the alternator’s magnetic field?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Hi,
I have canceled, why did you charge me again?
No chatgpt pls will upvote
No chatgpt pls will upvote
Chapter 27 Solutions
Essential University Physics
Ch. 27.3 - You push a bar magnet toward a loop, with the...Ch. 27.3 - Prob. 27.2GICh. 27.3 - A copper penny falls on a path that takes it...Ch. 27.3 - Prob. 27.5GICh. 27.5 - If you keep the current in a solenoid constant...Ch. 27.6 - Prob. 27.8GICh. 27 - In Fig. 27.35, a bar magnet moves toward a...Ch. 27 - Figure 27.36 shows two concentric conducting...Ch. 27 - Chapter 26 stated that a static magnetic field...Ch. 27 - Can an induced electric field exist in the absence...
Ch. 27 - A car battery has a 12-V emf, yet energy from the...Ch. 27 - Prob. 6FTDCh. 27 - Prob. 7FTDCh. 27 - Prob. 8FTDCh. 27 - It takes work to push two bar magnets together...Ch. 27 - A small magnet is dropped into each of two hollow...Ch. 27 - Find the magnetic flux through a 5.0-cm-diameter...Ch. 27 - A circular wire loop 45 cm in diameter has...Ch. 27 - Prob. 13ECh. 27 - Prob. 14ECh. 27 - Find the self-inductance of a 1500-turn solenoid...Ch. 27 - Prob. 16ECh. 27 - Prob. 17ECh. 27 - Prob. 18ECh. 27 - What inductance should you put in series with a...Ch. 27 - The current in a series RL circuit increases to...Ch. 27 - Prob. 21ECh. 27 - Prob. 22ECh. 27 - A 1250-turn solenoid 23.2 cm long and 1.58 cm in...Ch. 27 - Prob. 24ECh. 27 - The worlds strongest magnet that can produce a...Ch. 27 - Find the magnetic-field strength in a region where...Ch. 27 - Prob. 27ECh. 27 - Find an expression for the electric-field strength...Ch. 27 - Prob. 29ECh. 27 - Prob. 30ECh. 27 - Example 27.4: A battery of emf ε is connected in...Ch. 27 - Proposals to mine resources from the Moon have...Ch. 27 - Example 27.8: An electric doorbell uses an...Ch. 27 - Prob. 34ECh. 27 - Example 27.8: The superconducting solenoid in an...Ch. 27 - Prob. 36ECh. 27 - A conducting loop with area 0.15 m2 and resistance...Ch. 27 - A square wire loop of side l and resistance R is...Ch. 27 - A 5-turn coil 1.0 cm in diameter is rotated at 10...Ch. 27 - A spatially uniform magnetic field points in the...Ch. 27 - Prob. 41PCh. 27 - In Example 27.2 take a = 1.0 cm, w = 3.5 cm, and l...Ch. 27 - A 2000-turn solenoid is 2.0 m long and 15 cm in...Ch. 27 - A stent is a cylindrical tube, often made of metal...Ch. 27 - Prob. 45PCh. 27 - Youre an electrical engineer designing an...Ch. 27 - A generator consists of a rectangular coil 75 cm...Ch. 27 - Prob. 48PCh. 27 - Prob. 49PCh. 27 - The magnetic field inside a solenoid of circular...Ch. 27 - An electron is inside a solenoid, 28 cm from the...Ch. 27 - During lab, youre given a circular wire loop of...Ch. 27 - A flip coil is used to measure magnetic fields....Ch. 27 - Prob. 54PCh. 27 - Prob. 55PCh. 27 - In Fig. 27.23a, take R = 2.5 k and 0 = 50 V. When...Ch. 27 - How long does it take to dissipate 90% of the...Ch. 27 - Prob. 58PCh. 27 - Prob. 59PCh. 27 - Prob. 60PCh. 27 - In Fig. 27.40, take 0 = 12 V, R1 = 4.0 , R2 = 8.0...Ch. 27 - Prob. 62PCh. 27 - Prob. 63PCh. 27 - Your hospital is installing a new MRI scanner...Ch. 27 - A neutron stars magnetic field is about 108 T....Ch. 27 - Prob. 66PCh. 27 - Prob. 67PCh. 27 - Prob. 68PCh. 27 - An electric field and a magnetic field have the...Ch. 27 - Prob. 70PCh. 27 - Prob. 71PCh. 27 - Prob. 72PCh. 27 - Prob. 73PCh. 27 - A circular wire loop of radius a and resistance R...Ch. 27 - Use the node and loop laws to determine the...Ch. 27 - Prob. 77PCh. 27 - Prob. 78PCh. 27 - One way to measure blood flow when blood vessels...Ch. 27 - Clever farmers with power lines crossing their...Ch. 27 - Clever farmers with power lines crossing their...Ch. 27 - Clever farmers with power lines crossing their...Ch. 27 - Clever farmers with power lines crossing their...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Two culture media were inoculated with four different bacteria. After incubation, the following results were ob...
Microbiology: An Introduction
Why does a one-step growth curve differ in shape from that of a bacterial growth curve?
Brock Biology of Microorganisms (15th Edition)
16. A cyclist is rounding a 20-m-radius curve at 12 m/s. What is the minimum possible coefficient of static fri...
College Physics: A Strategic Approach (3rd Edition)
4. What five specific threats to biodiversity are described in this chapter? Provide an example of each.
Biology: Life on Earth (11th Edition)
Identify each of the following characteristics as belonging to cervical, thoracic, or lumbar vertebrae; the sac...
Human Anatomy & Physiology (2nd Edition)
Describe the 1H NMR spectrum you would expect for each of the following compounds, indicating the relative posi...
Organic Chemistry (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- No chatgpt pls will upvotearrow_forwardYou are standing a distance x = 1.75 m away from this mirror. The object you are looking at is y = 0.29 m from the mirror. The angle of incidence is θ = 30°. What is the exact distance from you to the image?arrow_forwardFor each of the actions depicted below, a magnet and/or metal loop moves with velocity v→ (v→ is constant and has the same magnitude in all parts). Determine whether a current is induced in the metal loop. If so, indicate the direction of the current in the loop, either clockwise or counterclockwise when seen from the right of the loop. The axis of the magnet is lined up with the center of the loop. For the action depicted in (Figure 5), indicate the direction of the induced current in the loop (clockwise, counterclockwise or zero, when seen from the right of the loop). I know that the current is clockwise, I just dont understand why. Please fully explain why it's clockwise, Thank youarrow_forward
- A planar double pendulum consists of two point masses \[m_1 = 1.00~\mathrm{kg}, \qquad m_2 = 1.00~\mathrm{kg}\]connected by massless, rigid rods of lengths \[L_1 = 1.00~\mathrm{m}, \qquad L_2 = 1.20~\mathrm{m}.\]The upper rod is hinged to a fixed pivot; gravity acts vertically downward with\[g = 9.81~\mathrm{m\,s^{-2}}.\]Define the generalized coordinates \(\theta_1,\theta_2\) as the angles each rod makes with thedownward vertical (positive anticlockwise, measured in radians unless stated otherwise).At \(t=0\) the system is released from rest with \[\theta_1(0)=120^{\circ}, \qquad\theta_2(0)=-10^{\circ}, \qquad\dot{\theta}_1(0)=\dot{\theta}_2(0)=0 .\]Using the exact nonlinear equations of motion (no small-angle or planar-pendulumapproximations) and assuming the rods never stretch or slip, determine the angle\(\theta_2\) at the instant\[t = 10.0~\mathrm{s}.\]Give the result in degrees, in the interval \((-180^{\circ},180^{\circ}]\).arrow_forwardWhat are the expected readings of the ammeter and voltmeter for the circuit in the figure below? (R = 5.60 Ω, ΔV = 6.30 V) ammeter I =arrow_forwardsimple diagram to illustrate the setup for each law- coulombs law and biot savart lawarrow_forward
- A circular coil with 100 turns and a radius of 0.05 m is placed in a magnetic field that changes at auniform rate from 0.2 T to 0.8 T in 0.1 seconds. The plane of the coil is perpendicular to the field.• Calculate the induced electric field in the coil.• Calculate the current density in the coil given its conductivity σ.arrow_forwardAn L-C circuit has an inductance of 0.410 H and a capacitance of 0.250 nF . During the current oscillations, the maximum current in the inductor is 1.80 A . What is the maximum energy Emax stored in the capacitor at any time during the current oscillations? How many times per second does the capacitor contain the amount of energy found in part A? Please show all steps.arrow_forwardA long, straight wire carries a current of 10 A along what we’ll define to the be x-axis. A square loopin the x-y plane with side length 0.1 m is placed near the wire such that its closest side is parallel tothe wire and 0.05 m away.• Calculate the magnetic flux through the loop using Ampere’s law.arrow_forward
- Describe the motion of a charged particle entering a uniform magnetic field at an angle to the fieldlines. Include a diagram showing the velocity vector, magnetic field lines, and the path of the particle.arrow_forwardDiscuss the differences between the Biot-Savart law and Coulomb’s law in terms of their applicationsand the physical quantities they describe.arrow_forwardExplain why Ampere’s law can be used to find the magnetic field inside a solenoid but not outside.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning


Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY