
An ideal voltmeter connected across a certain fresh 9-V battery reads 9.30 V, and an ideal ammeter briefly connected across the same battery reads 3.70 A. We say the battery has an open-circuit voltage of 9.30 V and a short-circuit current of 3.70 A. Model the battery as a source of emf ε in series with an internal resistance r as in Figure 27.1a. Determine both (a) ε and (b) r. An experimenter connects two of these identical batteries together as shown in Figure P27.45. Find (c) the open-circuit voltage and (d) the short-circuit current of the pair of connected batteries. (e) The experimenter connects a 12.0-Ω resistor between the exposed terminals of the connected batteries. Find the current in the resistor. (f) Find the power delivered to the resistor. (g) The experimenter connects a second identical resistor in parallel with the first. Find the power delivered to each resistor. (h) Because the same pair of batteries is connected across both resistors as was connected across the single resistor, why is the power in part (g) not the same as that in part (f)?
Figure P27.45
(a)

Answer to Problem 45AP
Explanation of Solution
Given info: The open circuit voltage of the battery is
In an open circuit current the current of the battery is
Formula to calculate the emf of the battery is,
Here,
Substitute
Conclusion:
Therefore, the emf of the battery is
(b)

Answer to Problem 45AP
Explanation of Solution
Given info: The open circuit voltage of the battery is
Formula to calculate the internal resistance of the battery is,
Here,
Substitute
Conclusion:
Therefore, resistance of the battery is
(c)

Answer to Problem 45AP
Explanation of Solution
Given info: The open circuit voltage of the battery is
Formula to calculate the total emf of the battery is,
Here,
Substitute
The total emf of the battery is equal to the open circuit voltage of the battery.
Conclusion:
Therefore, the open circuit voltage of the battery is
(d)

Answer to Problem 45AP
Explanation of Solution
Given info: The open circuit voltage of the battery is
The total resistance in the battery is,
Here,
Substitute
Thus, the internal resistance of the battery is
Formula to calculate the short circuit current of the batteries is,
Here,
Substitute
Conclusion:
Therefore, the short circuit current of the pair of connected batteries is
(e)

Answer to Problem 45AP
Explanation of Solution
Given info: The open circuit voltage of the battery is
The total series resistance in the battery is,
Here,
Substitute
Thus, the total series resistance of the battery is
Formula to calculate the current in the resistor
Here,
Substitute
Conclusion:
Therefore, the current in the resistor
(f)

Answer to Problem 45AP
Explanation of Solution
Given info: The open circuit voltage of the battery is
Formula to calculate the power delivered to the resistor is,
Here,
Substitute
Conclusion:
Therefore, the power delivered to the resistor is
(g)

Answer to Problem 45AP
Explanation of Solution
Given info: The open circuit voltage of the battery is
The batteries are connected in series. The voltages of the both batteries are same.
The equivalent internal resistance in the battery is,
Here,
Substitute
Thus, the total resistance of the resistor is
Formula to calculate the current in the batteries is,
Here,
Substitute
Thus, the current produced in the batteries is
Formula to calculate the terminal voltage across both batteries is,
Here,
Substitute
Thus, the terminal voltage across both batteries is
Formula to calculate the power delivered to each resistor is,
Here,
Substitute
Conclusion:
Therefore, the power delivered to each resistor is
(h)

Answer to Problem 45AP
Explanation of Solution
Given info: The open circuit voltage of the battery is
In part (g), the total internal resistance of the resistor is
Conclusion:
Therefore, the internal resistance of the batteries and the terminal voltage of the batteries is not same in both cases.
Want to see more full solutions like this?
Chapter 27 Solutions
Physics:f/sci.+engrs.,ap Ed.
- pls help on thesearrow_forward20. Two small conducting spheres are placed on top of insulating pads. The 3.7 × 10-10 C sphere is fixed whie the 3.0 × 107 C sphere, initially at rest, is free to move. The mass of each sphere is 0.09 kg. If the spheres are initially 0.10 m apart, how fast will the sphere be moving when they are 1.5 m apart?arrow_forwardpls help on allarrow_forward
- 19. Mount Everest, Earth's highest mountain above sea level, has a peak of 8849 m above sea level. Assume that sea level defines the height of Earth's surface. (re = 6.38 × 106 m, ME = 5.98 × 1024 kg, G = 6.67 × 10 -11 Nm²/kg²) a. Calculate the strength of Earth's gravitational field at a point at the peak of Mount Everest. b. What is the ratio of the strength of Earth's gravitational field at a point 644416m below the surface of the Earth to a point at the top of Mount Everest? C. A tourist watching the sunrise on top of Mount Everest observes a satellite orbiting Earth at an altitude 3580 km above his position. Determine the speed of the satellite.arrow_forwardpls help on allarrow_forwardpls help on allarrow_forward
- 6. As the distance between two charges decreases, the magnitude of the electric potential energy of the two-charge system: a) Always increases b) Always decreases c) Increases if the charges have the same sign, decreases if they have the opposite signs d) Increases if the charges have the opposite sign, decreases if they have the same sign 7. To analyze the motion of an elastic collision between two charged particles we use conservation of & a) Energy, Velocity b) Momentum, Force c) Mass, Momentum d) Energy, Momentum e) Kinetic Energy, Potential Energyarrow_forwardpls help on all asked questions kindlyarrow_forwardpls help on all asked questions kindlyarrow_forward
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning





