COLLEGE PHYSICS,V.2
11th Edition
ISBN: 9781305965522
Author: SERWAY
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Question
Chapter 27, Problem 40P
(a)
To determine
The kinetic energy of a non-relativistic particle in terms of its momentum.
(b)
To determine
The minimum kinetic energy of proton.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(a) Show that the kinetic energy of a nonrelativistic particle can be written in terms of its momentum as KE =p2/2m. (b) Use the results of part (a) to find the minimum kinetic energy of a proton confined within a nucleus having a diameter of 1.0 × 10−15m.
Show that the kinetic energy of a nonrelativistic particle can be written in terms of its momentum as KE = p2/2m. (b) Use the results of part (a) to find the minimum kinetic energy of a proton confined within a nucleus having a diameter of 1.0 x 10-15 m.
An unknown moving ion is confined in a OD nanomaterial in which all three dimensions
are equals to 5 nm. Estimate with what accuracy its velocity and energy can be
measured (given mass of the ion is 4.8×10 26 kg)?
Chapter 27 Solutions
COLLEGE PHYSICS,V.2
Ch. 27.5 - Prob. 27.1QQCh. 27.5 - Prob. 27.2QQCh. 27.5 - Prob. 27.3QQCh. 27.6 - Prob. 27.4QQCh. 27.6 - Prob. 27.5QQCh. 27 - Prob. 1CQCh. 27 - Prob. 2CQCh. 27 - Prob. 3CQCh. 27 - Prob. 4CQCh. 27 - Prob. 5CQ
Ch. 27 - Prob. 6CQCh. 27 - Prob. 7CQCh. 27 - Prob. 8CQCh. 27 - Prob. 9CQCh. 27 - Prob. 10CQCh. 27 - Prob. 11CQCh. 27 - Prob. 12CQCh. 27 - Prob. 13CQCh. 27 - Prob. 14CQCh. 27 - Prob. 15CQCh. 27 - Prob. 16CQCh. 27 - Prob. 1PCh. 27 - Prob. 2PCh. 27 - Prob. 3PCh. 27 - Prob. 4PCh. 27 - Prob. 5PCh. 27 - Prob. 6PCh. 27 - Prob. 7PCh. 27 - Prob. 8PCh. 27 - Prob. 9PCh. 27 - Prob. 10PCh. 27 - Prob. 11PCh. 27 - Prob. 12PCh. 27 - Prob. 13PCh. 27 - Prob. 14PCh. 27 - Prob. 15PCh. 27 - Prob. 16PCh. 27 - Prob. 17PCh. 27 - Prob. 18PCh. 27 - Prob. 19PCh. 27 - Prob. 20PCh. 27 - Prob. 21PCh. 27 - Prob. 22PCh. 27 - Prob. 23PCh. 27 - Prob. 24PCh. 27 - Prob. 25PCh. 27 - Prob. 26PCh. 27 - Prob. 27PCh. 27 - Prob. 28PCh. 27 - Prob. 29PCh. 27 - Prob. 30PCh. 27 - Prob. 31PCh. 27 - Prob. 32PCh. 27 - Prob. 33PCh. 27 - Prob. 34PCh. 27 - Prob. 35PCh. 27 - Prob. 36PCh. 27 - Prob. 37PCh. 27 - Prob. 38PCh. 27 - Prob. 39PCh. 27 - Prob. 40PCh. 27 - Prob. 41APCh. 27 - Prob. 42APCh. 27 - Prob. 43APCh. 27 - Prob. 44APCh. 27 - Prob. 45APCh. 27 - Prob. 46APCh. 27 - Prob. 47APCh. 27 - Prob. 48APCh. 27 - Prob. 49APCh. 27 - Prob. 50APCh. 27 - Prob. 51APCh. 27 - Prob. 52AP
Knowledge Booster
Similar questions
- c) Electrons of energy 1 GeV are scattered off the nuclei, 64Cu, 108Ag and 197 Au. The first diffraction minima are observed at scattering angles 7.4°, 6.2° and 5.00 for the three nuclei respectively. Write down the relation between the momentum transferred in the scattering process and the scattering angle. Hence make an estimate of the radii of the three nuclei and comment on the dependence of the radii on the atomic mass numbers. [ 11]arrow_forwardThe radius of a hydrogen nucleus is believed to be about 1.2 x 10-15 m. (a) If an electron rotates around the nucleus at that radius, what would be its speed according to the planetary model? (b) What would be the total mechanical energy? (c) Are these reasonable?arrow_forwardA particle with mass m is in a field and has the state (in spherical coordinates) : Where N > 0 and a > 0 are fixed numbers. Determine the average kinetic energy of the particles.arrow_forward
- This question is for modern physics and wave and particle: (a) To how small a region must an electron be confined for borderline relativistic speeds – say, 0.05c – to become reasonably likely? (Ans: 3.9×10^−12m ) (b) On the basis of this, would you expect relativistic effects to be prominent for hydrogen’s electron, which has an orbit radius near 10-10? For a lead atom “inner-shell” electron of orbit radius 10-12m?arrow_forward(a) A particle with mass m has kinetic energy equal to three times its rest energy. What is the de Broglie wavelength of this particle? (Hint: You must use the relativistic expressions for momen- tum and kinetic energy: E2 = (pc2) + (mc2)2 and K = E - mc2.) (b) Determine the numerical value of the kinetic energy (in MeV) and the wavelength (in meters) if the particle in part (a) is (i) an electron and (ii) a proton.arrow_forwardThe degeneracy pressure of the electrons can stabilize the collapse of a star due to gravity by equating the gravitational inward pressure with the outward electron gas degeneracy pressure. These cold stars called white dwarfs have small radii compared to their original size and this radius decreases as the original mass of the star increases. As the mass of a star increases, the electron energy increases to a point in which their energy has to be treated relativistically. (a) Evaluate the degeneracy pressure for ultra-relativistic electrons (problem 2, above). (b) As the pressure increases, the reaction e − + p → n + ν takes place. The neutrinos (ν) escape as matter is transparent to them, electrons and protons convert to neutrons until we are left with a neutron star. Using your expression for the degeneracy pressure obtained in (a) above, equate the gravitational pressureto the neutron degeneracy pressure (replace the electron’s mass in your degeneracy pressure expression from (a)…arrow_forward
- (2nx sin \1.50. 2nz Consider the case of a 3-dimensional particle-in-a-box. Given: 4 = sin(ny) sin 2.00. What is the energy of the system? O 6h?/8m O 4h²/8m O 3h2/8m O none are correctarrow_forwardWhat is the effective number of relativistic degrees of freedom g* for a thermal plasma at a temperature of 30 MeV? Note that at this temperature one should expect that the following particle species are in equilibrium: electrons, neutrinos, and photons.arrow_forwardA hole is the absence of an electron at a potential location for its existence. Given that a hole is the result of the absence of an electron, its mass should be zero. However, we regard the effective mass of a hole to be negative. Why?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning