Nonlinear Dynamics and Chaos
Nonlinear Dynamics and Chaos
2nd Edition
ISBN: 9780813349107
Author: Steven H. Strogatz
Publisher: PERSEUS D
bartleby

Videos

Question
Book Icon
Chapter 2.7, Problem 3E
Interpretation Introduction

Interpretation:

To identify all the equilibrium points and their stability for the vector field x˙ = sin x. To plot the function V(x).

Concept Introduction:

Potential is x˙ = f(x) = -dVdx

The points of minima of the function  V(x) are the stable equilibrium points, and the points of maxima are the unstable equilibrium points.

Blurred answer
Students have asked these similar questions
Calculate the directional derivative of = xz + y? in the direction of 20 – ý + 32 at the point (2, 0, –1). (a) Use the parameterisationr = ro+ s§. (b) Use V.
Show that t, e^t, and sin(t) are linearly independent.
Let r(t) be a vector-valued function such that the magnitude of r(t) does not change over time. Use derivatives to show that the derivative r'(t) is perpendicular to the function r(t) for all times t.
Knowledge Booster
Background pattern image
Advanced Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Advanced Engineering Mathematics
Advanced Math
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Wiley, John & Sons, Incorporated
Text book image
Numerical Methods for Engineers
Advanced Math
ISBN:9780073397924
Author:Steven C. Chapra Dr., Raymond P. Canale
Publisher:McGraw-Hill Education
Text book image
Introductory Mathematics for Engineering Applicat...
Advanced Math
ISBN:9781118141809
Author:Nathan Klingbeil
Publisher:WILEY
Text book image
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Text book image
Basic Technical Mathematics
Advanced Math
ISBN:9780134437705
Author:Washington
Publisher:PEARSON
Text book image
Topology
Advanced Math
ISBN:9780134689517
Author:Munkres, James R.
Publisher:Pearson,
Basic Differentiation Rules For Derivatives; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=IvLpN1G1Ncg;License: Standard YouTube License, CC-BY