Numerical Methods for Engineers
Numerical Methods for Engineers
7th Edition
ISBN: 9780073397924
Author: Steven C. Chapra Dr., Raymond P. Canale
Publisher: McGraw-Hill Education
bartleby

Videos

Textbook Question
Book Icon
Chapter 27, Problem 27P

The following nonlinear, parasitic ODE was suggested by Hornbeck (1975):

d y 1 d t = 5 ( y 1 t 2 )

If the initial condition is y 1 ( 0 ) = 0.08 , obtain a solution from t = 0  to 5 :

(a) Analytically

(b) Using the fourth-order RK method with a constant step size of 0.03125.

(c) Using the MATLAB function ode45.

(d) Using the MATLAB function ode23s.

(e) Using the MATLAB function ode23tb.

Present your results in graphical form.

(a)

Expert Solution
Check Mark
To determine

To calculate: The analytical solution of the nonlinear, parasitic ordinary differential equation, dy1dt=5(y1t2), where the initial condition is y1(0)=0.08 and t=0 to 5.

Answer to Problem 27P

Solution:

The analytical solution of the differential equation is y1(t)=t2+0.4t+0.08.

Explanation of Solution

Given Information:

A nonlinear, parasitic ordinary differential equation, dy1dt=5(y1t2) with initial condition y1(0)=0.08 and t=0 to 5.

Formula used:

The general linear differential equation is,

dy1dt+P(t)y1=Q(t)

Calculation:

Consider the nonlinear ordinary differential equation, dy1dt=5(y1t2).

Rearrange the above differential equationto get,

dy1dt5y1=5t2

Now, compare the above differential equation with the general linear differential equation

dy1dt+P(t)y1=Q(t)

Thus,

P(t)=5 and Q(t)=5t2

Now, find the integrating factor (I. F.) as shown below,

I.F=e5dt=e5t

Therefore, the solution of the linear differential equation is given as,

y1(I.F.)=Q(t)(I.F.)dt+c

Substitute the value of integrating factor (I. F.) in above equation,

y1(I.F.)=Q(t)(I.F.)dt+cy1e5t=5t2e5tdt+c

Now, integrate the right-hand-side of the above equation,

y1e5t=5t2e5tdt+cy1e5t=125e5t(25t2+10t+2)+c

Solve further, to get

y1=125e5te5t(25t2+10t+2)+ce5t=125(25t2+10t+2)+ce5t=t2+0.4t+0.08+ce5t

Thus, the solution is y1(t)=t2+0.4t+0.08+ce5t.

Now, to determine the constant c, use the initial condition y1(0)=0.08. Thus,

y1(0)=(0)2+0.4(0)+0.08+ce5(0)0.08=0+0+0.08+cc=0

Substitute c=0 in the solution obtained above, that is, y1(t).

Therefore,

y1(t)=t2+0.4t+0.08+ce5ty1(t)=t2+0.4t+0.08+(0)e5ty1(t)=t2+0.4t+0.08

Hence, the solution of the differential equation is y1(t)=t2+0.4t+0.08.

(b)

Expert Solution
Check Mark
To determine

To calculate: Thesolution of the nonlinear, parasitic ordinary differential equation, dy1dt=5(y1t2), using the fourth-order RK method with a constant step size of 0.03125.

Answer to Problem 27P

Solution:

The graph of the solution of the differential equation is,

Explanation of Solution

Given Information:

A nonlinear, parasitic ordinary differential equation, dy1dt=5(y1t2) step size of 0.03125.

Calculation:

Consider the nonlinear ordinary differential equation, dy1dt=5(y1t2).

The VBA code to solve the above differential equation with fourth-order RK method with a constant step size of 0.03125 is given below,

OptionExplicit

Subfind()

'Define dimension of variables

Dim t AsDouble, y1 AsDouble, h AsDouble,hhAsDouble

'Reset the values

t =0

y1 =0.08

h =0.03125

'move to the cell b15

Range("b15").Select

'Assign name to columns

ActiveCell. Value="4th order RK"

ActiveCell. Offset(1,0).Select

ActiveCell. Value="t"

ActiveCell. Offset(0,1).Select

ActiveCell. Value="y1"

'determine y1 at different values of t using RK method of 4th order

hh= RK4(t, y1, h)

EndSub

'define function derivative

Functiondrive(t, y1)

'define dimension of variable temp

Dim temp AsDouble

'evaluate the value of derivative

temp =5*(y1 -(t * t))

drive = temp

EndFunction

'define function

Function RK4(t, y1, h)

'define dimension of variables

Dim k1 AsDouble, k2 AsDouble, k3 AsDouble, k4 AsDouble,yanalAsDouble

Dim cm AsDouble, cm1 AsDouble,ceAsDouble,slpAsDouble,cnewAsDouble

Dim j AsInteger

'evaluate k1, k2, k3 and k4

For j =1To160

'Move to the specified cell b16

Range("b16").Select

ActiveCell. Offset(j,0).Select

ActiveCell. Value= t

ActiveCell. Offset(0,1).Select

ActiveCell. Value= y1

'Call drive function to find k1

k1 =drive(t, y1)

cm = y1 +(k1 *(h /2))

'Call drive function to find k2

k2 =drive(t +(h /2), cm)

cm1 = y1 +(k2 *(h /2))

'Call drive function to find k3

k3 =drive(t +(h /2), cm1)

ce= y1 + k3 * h

'Call drive function to find k4

k4 =drive(t + h,ce)

slp=(k1 +2*(k2 + k3)+ k4)/6

cnew= y1 +(slp* h)

yanal=yanalfun(t)

ActiveCell. Offset(0,1).Select

ActiveCell. Value=yanal

t = t + h

y1 =cnew

Next

EndFunction

'define function

Functionyanalfun(t)

'define dimension of variable temp1

Dim temp1 AsDouble

'evaluate y1 analytically

temp1 =(t * t +0.4* t +0.08)

yanalfun= temp1

EndFunction

The output given below is obtained in the Excel after the execution of the above code:

4th order RK
t y1
0 0.08 0.08
0.03125 0.093476 0.093477
0.0625 0.108906 0.108906
0.09375 0.126289 0.126289
0.125 0.145625 0.145625
0.15625 0.166914 0.166914
0.1875 0.190156 0.190156
0.21875 0.215351 0.215352
0.25 0.242499 0.2425
0.28125 0.2716 0.271602
0.3125 0.302655 0.302656
0.34375 0.335662 0.335664
0.375 0.370622 0.370625
0.40625 0.407536 0.407539
0.4375 0.446403 0.446406
0.46875 0.487222 0.487227
0.5 0.529995 0.53
0.53125 0.57472 0.574727
0.5625 0.621399 0.621406
0.59375 0.670031 0.670039
0.625 0.720615 0.720625
0.65625 0.773152 0.773164
0.6875 0.827642 0.827656
0.71875 0.884085 0.884102
0.75 0.942481 0.9425
0.78125 1.002829 1.002852
0.8125 1.06513 1.065156
0.84375 1.129383 1.129414
0.875 1.195589 1.195625
0.90625 1.263747 1.263789
0.9375 1.333857 1.333906
0.96875 1.405919 1.405977
1 1.479932 1.48
1.03125 1.555897 1.555977
1.0625 1.633814 1.633906
1.09375 1.713681 1.713789
1.125 1.795498 1.795625
1.15625 1.879266 1.879414
1.1875 1.964983 1.965156
1.21875 2.052649 2.052852
1.25 2.142263 2.1425
1.28125 2.233824 2.234102
1.3125 2.327332 2.327656
1.34375 2.422785 2.423164
1.375 2.520181 2.520625
1.40625 2.61952 2.620039
1.4375 2.7208 2.721406
1.46875 2.824017 2.824727
1.5 2.929171 2.93
1.53125 3.036257 3.037227
1.5625 3.145273 3.146406
1.59375 3.256214 3.257539
1.625 3.369075 3.370625
1.65625 3.483852 3.485664
1.6875 3.600538 3.602656
1.71875 3.719125 3.721602
1.75 3.839605 3.8425
1.78125 3.961966 3.965352
1.8125 4.086198 4.090156
1.84375 4.212287 4.216914
1.875 4.340215 4.345625
1.90625 4.469964 4.476289
1.9375 4.601512 4.608906
1.96875 4.734831 4.743477
2 4.869893 4.88
2.03125 5.00666 5.018477
2.0625 5.145091 5.158906
2.09375 5.285137 5.301289
2.125 5.426742 5.445625
2.15625 5.569837 5.591914
2.1875 5.714346 5.740156
2.21875 5.860176 5.890352
2.25 6.007221 6.0425
2.28125 6.155356 6.196602
2.3125 6.304436 6.352656
2.34375 6.454288 6.510664
2.375 6.604715 6.670625
2.40625 6.755482 6.832539
2.4375 6.906318 6.996406
2.46875 7.056903 7.162227
2.5 7.206864 7.33
2.53125 7.355766 7.499727
2.5625 7.503099 7.671406
2.59375 7.648268 7.845039
2.625 7.790577 8.020625
2.65625 7.92921 8.198164
2.6875 8.063218 8.377656
2.71875 8.191486 8.559102
2.75 8.312714 8.7425
2.78125 8.425381 8.927852
2.8125 8.527709 9.115156
2.84375 8.617619 9.304414
2.875 8.69268 9.495625
2.90625 8.750052 9.688789
2.9375 8.786412 9.883906
2.96875 8.797877 10.08098
3 8.779905 10.28
3.03125 8.727189 10.48098
3.0625 8.633523 10.68391
3.09375 8.491649 10.88879
3.125 8.293087 11.09563
3.15625 8.027917 11.30441
3.1875 7.684546 11.51516
3.21875 7.249417 11.72785
3.25 6.706683 11.9425
3.28125 6.037815 12.1591
3.3125 5.221152 12.37766
3.34375 4.231369 12.59816
3.375 3.038857 12.82063
3.40625 1.609002 13.04504
3.4375 -0.09867 13.27141
3.46875 -2.13146 13.49973
3.5 -4.5447 13.73
3.53125 -7.40305 13.96223
3.5625 -10.7821 14.19641
3.59375 -14.7703 14.43254
3.625 -19.4709 14.67063
3.65625 -25.0048 14.91066
3.6875 -31.5132 15.15266
3.71875 -39.1613 15.3966
3.75 -48.1421 15.6425
3.78125 -58.6814 15.89035
3.8125 -71.043 16.14016
3.84375 -85.5354 16.39191
3.875 -102.519 16.64563
3.90625 -122.417 16.90129
3.9375 -145.72 17.15891
3.96875 -173.006 17.41848
4 -204.949 17.68
4.03125 -242.336 17.94348
4.0625 -286.088 18.20891
4.09375 -337.283 18.47629
4.125 -397.179 18.74563
4.15625 -467.248 19.01691
4.1875 -549.211 19.29016
4.21875 -645.079 19.56535
4.25 -757.205 19.8425
4.28125 -888.338 20.1216
4.3125 -1041.69 20.40266
4.34375 -1221.03 20.68566
4.375 -1430.74 20.97063
4.40625 -1675.96 21.25754
4.4375 -1962.71 21.54641
4.46875 -2297.99 21.83723
4.5 -2690.02 22.13
4.53125 -3148.39 22.42473
4.5625 -3684.34 22.72141
4.59375 -4310.97 23.02004
4.625 -5043.62 23.32063
4.65625 -5900.23 23.62316
4.6875 -6901.75 23.92766
4.71875 -8072.7 24.2341
4.75 -9441.73 24.5425
4.78125 -11042.3 24.85285
4.8125 -12913.7 25.16516
4.84375 -15101.5 25.47941
4.875 -17659.5 25.79563
4.90625 -20650.1 26.11379
4.9375 -24146.4 26.43391
4.96875 -28234.2 26.75598

Now, plot the following chart using the data obtained in Excel.

In the above plot, the series1 represent the numerical solution whereas the series2 represent the exact solution.

(c)

Expert Solution
Check Mark
To determine

The solution of the nonlinear, parasitic ordinary differential equation, dy1dt=5(y1t2), using the MATLAB function ode45.

Answer to Problem 27P

Solution:

The graph of the solution of the differential equation is,

Numerical Methods for Engineers, Chapter 27, Problem 27P , additional homework tip  1

Explanation of Solution

Given Information:

A nonlinear, parasitic ordinary differential equation, dy1dt=5(y1t2).

Consider the nonlinear ordinary differential equation, dy1dt=5(y1t2).

Use the MATLAB function ODE45 to solve the above differential equation. The result is obtained in graphical form.

Write the code given below in MATLAB editor window and save it.

%create a function yp

functionyp=dy(t,y)

%calculate the value of yp

yp=5*(y-t^2);

Now, write the following code in MATLAB command window

Numerical Methods for Engineers, Chapter 27, Problem 27P , additional homework tip  2

Following graph is obtained after the execution of the above MATLAB code.

Numerical Methods for Engineers, Chapter 27, Problem 27P , additional homework tip  3

(d)

Expert Solution
Check Mark
To determine

The solution of the nonlinear, parasitic ordinary differential equation, dy1dt=5(y1t2), using the MATLAB function ode23s.

Answer to Problem 27P

Solution:

The graph of the solution of the differential equation is,

Numerical Methods for Engineers, Chapter 27, Problem 27P , additional homework tip  4

Explanation of Solution

Given Information:

A nonlinear, parasitic ordinary differential equation, dy1dt=5(y1t2).

Consider the nonlinear ordinary differential equation, dy1dt=5(y1t2).

Use the MATLAB function ODE23s to solve the above differential equation. The result is obtained in graphical form.

Write the code given below in MATLAB editor window and save it.

%create a function yp

functionyp=dy(t,y)

%calculate the value of yp

yp=5*(y-t^2);

Now, write the following code in MATLAB command window

Numerical Methods for Engineers, Chapter 27, Problem 27P , additional homework tip  5

Following graph is obtained after the execution of the above MATLAB code.

Numerical Methods for Engineers, Chapter 27, Problem 27P , additional homework tip  6

(e)

Expert Solution
Check Mark
To determine

The solution of the nonlinear, parasitic ordinary differential equation, dy1dt=5(y1t2), using the MATLAB function ode23s.

Answer to Problem 27P

Solution:

The graph of the solution of the differential equation is,

Numerical Methods for Engineers, Chapter 27, Problem 27P , additional homework tip  7

Explanation of Solution

Given Information:

A nonlinear, parasitic ordinary differential equation, dy1dt=5(y1t2).

Consider the nonlinear ordinary differential equation, dy1dt=5(y1t2).

Use the MATLAB function ODE23s to solve the above differential equation. The result is obtained in graphical form.

Write the code given below in MATLAB editor window and save it.

%create a function yp

functionyp=dy(t,y)

%calculate the value of yp

yp=5*(y-t^2);

Now, write the following code in MATLAB command window

Numerical Methods for Engineers, Chapter 27, Problem 27P , additional homework tip  8

Following graph is obtained after the execution of the above MATLAB code.

Numerical Methods for Engineers, Chapter 27, Problem 27P , additional homework tip  9

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Applied maths form
Classify the following ODE y (4) -3y (3)-y'=0
Find the linearization at x = a. 1 f(x) = = 5 +3

Chapter 27 Solutions

Numerical Methods for Engineers

Knowledge Booster
Background pattern image
Advanced Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Text book image
College Algebra
Algebra
ISBN:9781938168383
Author:Jay Abramson
Publisher:OpenStax
Text book image
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
Intro to the Laplace Transform & Three Examples; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=KqokoYr_h1A;License: Standard YouTube License, CC-BY