
Concept explainers
(a)
The amount of iron in 1.00 mole
of iron.
(a)

Answer to Problem 27.24P
Explanation of Solution
Given Info: The cross-sectional area of iron wire is
Explanation:
Amount of iron in one mole is given as,
It is the standard value for iron wire.
Convert the amount of iron into
Thus,
Conclusion:
Therefore,
(b)
The molar density of iron.
(b)

Answer to Problem 27.24P
Explanation of Solution
Given Info: The cross-sectional area of iron wire is
Explanation:
The formula for the molar density is,
Here,
Substitute
Thus, the molar density of iron is
Conclusion:
Therefore, the molar density of iron is
(c)
The number density of iron atoms.
(c)

Answer to Problem 27.24P
Explanation of Solution
Given Info: The cross-sectional area of iron wire is
Explanation:
The formula for the number density is,
Here,
Substitute
Thus, the number density of iron atoms is
Conclusion:
Therefore, the number density of iron atoms is
(d)
The number density of two conduction iron atoms.
(d)

Answer to Problem 27.24P
Explanation of Solution
Given Info: The cross-sectional area of iron wire is
Explanation:
The formula for the number density of two conduction atoms is,
Here,
Substitute
Thus, the number density of two conduction iron atoms is
Conclusion:
Therefore, the number density of two conduction iron atoms is
(e)
The drift speed of the conduction electrons.
(e)

Answer to Problem 27.24P
Explanation of Solution
Given Info: The cross-sectional area of iron wire is
Explanation:
Formula to calculate the drift speed is,
Substitute
Conclusion:
Therefore, the total drift speed of the conduction electrons is.
Want to see more full solutions like this?
Chapter 27 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- The rectangular loop of wire shown in the figure (Figure 1) has a mass of 0.18 g per centimeter of length and is pivoted about side ab on a frictionless axis. The current in the wire is 8.5 A in the direction shown. Find the magnitude of the magnetic field parallel to the y-axis that will cause the loop to swing up until its plane makes an angle of 30.0 ∘ with the yz-plane. Find the direction of the magnetic field parallel to the y-axis that will cause the loop to swing up until its plane makes an angle of 30.0 ∘ with the yz-plane.arrow_forwardA particle with a charge of − 5.20 nC is moving in a uniform magnetic field of (B→=−( 1.22 T )k^. The magnetic force on the particle is measured to be (F→=−( 3.50×10−7 N )i^+( 7.60×10−7 N )j^. Calculate the y and z component of the velocity of the particle.arrow_forwardneed answer asap please thank youarrow_forward
- 3. a. Determine the potential difference between points A and B. b. Why does point A have a higher potential energy? Q = +1.0 C 3.2 cm 4.8 cm Aarrow_forwardPls help ASAParrow_forward1. Explain the difference between electrical field, potential difference, and electrical potential differencearrow_forward
- Pls help ASAParrow_forward9. When an electron moves into a uniform and perpendicular magnetic field, it will.. a. Accelerate parallel to the magnetic Field until it leaves b. Accelerate in a circular path c. Accelerate perpendicular to both the magnetic field and its original direction d. Repel back into the electric field 10. If a proton at rest is placed in a uniform magnetic field with no electric or gravitational field around, the proton will…….. a. Accelerate in the direction of the magnetic field b. Accelerate in a direction perpendicular to the magnetic field c. Move in a circular path d. Not acceleratearrow_forward7. The electric field at a distance of 1.0 mfrom a charged sphere is 100 N/C. At what distance from thesphere will the electric field be 50 N/C? a. 1.1 m b. 1.4 m c. 2.0 m d. 4.0 m 8. The electric potential due to a point charge at a point depends on a. The direction of the electric field b. The distance from the point charge c. The velocity of the point charge d. The mass of the point chargearrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





