EBK PHYSICS FOR SCIENTISTS AND ENGINEER
9th Edition
ISBN: 9780100460300
Author: SERWAY
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
thumb_up100%
Chapter 27, Problem 27.1P
To determine
The number of years does one electron takes to travel the full length of the cable.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A 200-km-long high-voltage transmission line 2.0 cm in diameter carries a steady current of 1 000 A. If the conductor is copper with a free charge density of 8.5 × 10−8 electrons per cubic meter, how many years does it take one electron to travel the full length of the cable?
A 200-km-long high-voltage transmission line 2.00 cm in diameter carries a steady current of 1 000 A. If the conductor is copper with a free charge density of 8.50 x 1028 electrons per cubic meter, how many years does it take one electron to travel the full length of the cable?
A 190-km-long high-voltage transmission line 2.0 cm in diameter carries a steady current of 1,210 A. If the conductor is copper with a free charge density of 8.5 x1028 electrons per cubic meter, how many years does it take one electron to travel the full length of the cable? (Use 3.156 x107 for the number of seconds in a year.)
Chapter 27 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
Ch. 27 - Consider positive and negative charges of equal...Ch. 27 - Prob. 27.2QQCh. 27 - Prob. 27.3QQCh. 27 - When does an incandescent lightbulb carry more...Ch. 27 - For the two lightbulbs shown in Figure 27.13, rank...Ch. 27 - Car batteries are often rated in ampere-hours....Ch. 27 - Prob. 27.2OQCh. 27 - A cylindrical metal wire at room temperature is...Ch. 27 - Prob. 27.4OQCh. 27 - A potential difference of 1.00 V is maintained...
Ch. 27 - Three wires are made of copper having circular...Ch. 27 - A metal wire of resistance R is cut into three...Ch. 27 - A metal wire has a resistance of 10.0 at a...Ch. 27 - The current-versus-voltage behavior of a certain...Ch. 27 - Two conductors made of die same material are...Ch. 27 - Two conducting wires A and B of the same length...Ch. 27 - Two lightbulbs both operate on 120 V. One has a...Ch. 27 - Wire B has twice the length and twice the radius...Ch. 27 - If you were 10 design an electric healer using...Ch. 27 - Prob. 27.2CQCh. 27 - When the potential difference across a certain...Ch. 27 - Over the lime interval after a difference in...Ch. 27 - How does the resistance for copper and for silicon...Ch. 27 - Use the atomic theory of matter to explain why the...Ch. 27 - If charges flow very slowly through a metal, why...Ch. 27 - Newspaper articles often contain statements such...Ch. 27 - Prob. 27.1PCh. 27 - A small sphere that carries a charge q is whirled...Ch. 27 - Prob. 27.3PCh. 27 - In the Bohr model of the hydrogen atom (which will...Ch. 27 - A proton beam in an accelerator carries a current...Ch. 27 - Prob. 27.6PCh. 27 - Prob. 27.7PCh. 27 - Figure P26.6 represents a section of a conductor...Ch. 27 - The quantity of charge q (in coulombs) that has...Ch. 27 - A Van de Graaff generator (see Problem 24)...Ch. 27 - The electron beam emerging from a certain...Ch. 27 - An electric current in a conductor varies with...Ch. 27 - A teapot with a surface area of 700 cm2 is to be...Ch. 27 - A lightbulb has a resistance of 240 when...Ch. 27 - Prob. 27.15PCh. 27 - A 0.900-V potential difference is maintained...Ch. 27 - An electric heater carries a current of 13.5 A...Ch. 27 - Prob. 27.18PCh. 27 - Prob. 27.19PCh. 27 - Prob. 27.20PCh. 27 - A portion of Nichrome wire of radius 2.50 mm is to...Ch. 27 - If the current carried by a conductor is doubled,...Ch. 27 - Prob. 27.23PCh. 27 - Prob. 27.24PCh. 27 - If the magnitude of the drill velocity of free...Ch. 27 - Prob. 27.26PCh. 27 - Prob. 27.27PCh. 27 - While taking photographs in Death Valley on a day...Ch. 27 - Prob. 27.29PCh. 27 - Plethysmographs are devices used for measuring...Ch. 27 - Prob. 27.31PCh. 27 - An engineer needs a resistor with a zero overall...Ch. 27 - An aluminum wire with a diameter of 0.100 mm has a...Ch. 27 - Review. Ail aluminum rod has a resistance of 1.23 ...Ch. 27 - At what temperature will aluminum have a...Ch. 27 - Assume that global lightning on the Earth...Ch. 27 - In a hydroelectric installation, a turbine...Ch. 27 - A Van de Graaff generator (see Fig. 25.23) is...Ch. 27 - A certain waffle iron is rated at 1.00 kW when...Ch. 27 - The potential difference across a resting neuron...Ch. 27 - Suppose your portable DVD player draws a current...Ch. 27 - Review. A well-insulated electric water healer...Ch. 27 - A 100-W lightbulb connected to a 120-V source...Ch. 27 - The cost of energy delivered to residences by...Ch. 27 - Prob. 27.45PCh. 27 - Residential building codes typically require the...Ch. 27 - Assuming the cost of energy from the electric...Ch. 27 - An 11.0-W energy-efficient fluorescent lightbulb...Ch. 27 - A coil of Nichrome wire is 25.0 m long. The wire...Ch. 27 - Review. A rechargeable battery of mass 15.0 g...Ch. 27 - A 500-W heating coil designed to operate from 110...Ch. 27 - Why is the following situation impossible? A...Ch. 27 - A certain toaster has a heating element made of...Ch. 27 - Make an order-of-magnitude estimate of the cost of...Ch. 27 - Review. The healing element of an electric coffee...Ch. 27 - A 120-V motor has mechanical power output of 2.50...Ch. 27 - Prob. 27.57APCh. 27 - Prob. 27.58APCh. 27 - Prob. 27.59APCh. 27 - Lightbulb A is marked 25 W 120 V, and lightbulb B...Ch. 27 - One wire in a high-voltage transmission line...Ch. 27 - An experiment is conducted to measure the...Ch. 27 - A charge Q is placed on a capacitor of capacitance...Ch. 27 - Review. An office worker uses an immersion heater...Ch. 27 - Prob. 27.65APCh. 27 - An all-electric car (not a hybrid) is designed to...Ch. 27 - Prob. 27.67APCh. 27 - Prob. 27.68APCh. 27 - An electric utility company supplies a customers...Ch. 27 - The strain in a wire can be monitored and computed...Ch. 27 - An oceanographer is studying how the ion...Ch. 27 - Why is the following situation impossible? An...Ch. 27 - Prob. 27.73APCh. 27 - A close analogy exists between the flow of energy...Ch. 27 - Review. When a straight wire is warmed, its...Ch. 27 - Prob. 27.76APCh. 27 - Review. A parallel-plate capacitor consists of...Ch. 27 - The dielectric material between the plates of a...Ch. 27 - Prob. 27.79APCh. 27 - Prob. 27.80APCh. 27 - The potential difference across the filament of a...Ch. 27 - Prob. 27.82CPCh. 27 - A spherical shell with inner radius ra and outer...Ch. 27 - Material with uniform resistivity is formed into...Ch. 27 - A material of resistivity is formed into the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 340-km-long high-voltage transmission line 2.0 cm in diameter carries a steady current of 1,230 A. If the conductor is copper with a free charge density of 8.5 x 1028 electrons per cubic meter, how many years does it take one electron to travel the full length of the cable? (Use 3.156 × 107 for the number of seconds in a year.) yrarrow_forwardA 250-km-long high-voltage transmission line 2.00 cm in diameter carries a steady current of 1,070 A. If the conductor is copper with a free charge density of 8.50 x 1028 electrons per cubic meter, how many years does it take one electron to travel the full length of the cable? (Use 3.156 x 107 for the number of seconds in a year.)arrow_forwardA 190-km-long high-voltage transmission line 2.00 cm in diameter carries a steady current of 1,230 A. If the conductor is copper with a free charge density of 8.50 × 1028 electrons per cubic meter, how many years does it take one electron to travel the full length of the cable? (Use 3.156 × 107 for the number of seconds in a year.) yrarrow_forward
- A high voltage transmission line of diameter 2.55 cm and length 3.42167 km carries a steady current of 2 x103 A. If the conductor is copper with a free charge density of 7 x 1028 electrons/m3, how long (in seconds ) does it take one electron to travel the full length of the cable? (e = 1.6 x 10−19 C).For this problem use scientific/exponential notation to represent your answer.arrow_forwardA 200-km-long high-voltage transmission line 2.9 cm in diameter carries a steady current of 1000 A. If the conductor is copper with a free charge density of 8.50×1028 electrons per cubic meter, what is the drift velocity (in µm/s) of the electrons?arrow_forwardA high voltage transmission line of diameter 3.73 cm and length 3.76189 km carries a steady current of 1.9 x103 A. If the conductor is copper with a free charge density of 6 x 1028 electrons/m3, how long (in seconds ) does it take one electron to travel the full length of the cable? (e = 1.6 x 10−19 C).For this problem use scientific/exponential notation to represent your answer. Eg., -0.0001 can be written as 1.0e-4 or as 1.0E-4. Spaces are not allowed.arrow_forward
- A high voltage transmission line of diameter 2.09 cm and length 4.9017 km carries a steady current of 1.1 x 103 A. If the conductor is copper with a free charge density of 4 x 1028 electrons/m3 how long (in seconds) does it take one electron to travel the full length of the cable? (e=1.6 x 1019 C). Use scientific/exponential notation to represent your answer.arrow_forwardA high voltage transmission line with a diameter of 2 cm carries a steady current of 980 A. The conductor is copper with a free charge density of 8×1028 electrons/m3. If it takes 8×108 s for one electron to travel the full length of the cable, how long is the cable (in m)? (e = 1.6×10-19 C)arrow_forwardA 260-km-long high-voltage transmission line 2.0 cm in diameter carries a steady current of 1,180 A. If the conductor is copper with a free charge density of 8.5 1028 electrons per cubic meter, how many years does it take one electron to travel the full length of the cable? (Use 3.156 107 for the number of seconds in a year.) yrarrow_forward
- A 210-km-long high-voltage transmission line 2.0 cm in diameter carries a steady current of 1,060 A. If the conductor is copper with a free charge density of 8.5 x 1028 electrons per cubic meter, how many years does it take one electron to travel the full length of the cable? (Use 3.156 x 107 for the number of seconds in a year.) yr Need Help? Read It Master Itarrow_forwardT A 2.0 x 102-km-long high-voltage transmission line 2.0 cm in diameter carries a steady current of 1.0 x 10° A. If the conductor is copper with a free charge density of 8.5 × 1028 electrons/m³, how many years does it take one electron to travel the full length of the cable?arrow_forwardA high-voltage copper transmission line with a diameter of 1.40 cm and a length of 120 km carries a steady current of 8.25 102 A. If copper has a free charge density of 8.46 1028 electrons/m3, over what time interval does one electron travel the full length of the line?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning