Concept explainers
(a)
The speed of Earth in its orbit by using the data in appendix 1, if the Earth’s orbit is assumed to be circular.
(a)

Answer to Problem 26Q
Solution:
Explanation of Solution
Given data:
From appendix 1, the radius of the Earth’s orbit is
Formula used:
Write the expression for speed.
Here,
Explanation:
Since it is given that Earth’s orbit is to be assumed to be circular, the distance covered by the Earth in a revolution is equal to the perimeter of the circle.
Recall the expression for speed.
Substitute
Here, is the radius of Earth’s orbit.
Substitute
Conclusion:
Hence, the speed of Earth in its orbit calculated by using the data from appendix 1 is close to
(b)
The wavelength (in meters) of the signal received by the Earth if the aliens are transmitting it at a frequency of
(b)

Answer to Problem 26Q
Solution:
Explanation of Solution
Given data:
The frequency of the signal is
Formula used:
Write the expression for the wavelength of a wave.
Here,
Explanation:
Consider the speed of light to be
As the Earth is neither moving toward nor away from the alien’s planet, so there is no relative motion between the planets. Therefore, there would be no Doppler effect.
Recall the expression for the wavelength of a wave.
Substitute
Conclusion:
Thus, the wavelength of the signal received by Earth from the aliens under the given condition is calculated to be
(c)
The maximum wavelength shift in meters as well as in percentage of unshifted wavelength, calculated in part (b), if the maximum Doppler shift occurs when moving directly toward or away from the alien planet.
(c)

Answer to Problem 26Q
Solution:
Explanation of Solution
Given data:
The frequency of the signal is
Formula used:
Write the expression for the Doppler shift if the receiver is directly approaching the transmitter.
Here,
Explanation:
Since the Earth (receiver) is moving directly toward the alien planet (transmitter), there is a relative motion between them. Therefore, a Doppler shift would be observed.
Recall the value of the wavelength of the signal received by the Earth from the aliens as calculated in part (b).
Recall the value of Earth’s speed in its orbit under the given condition form part (a).
Consider the speed of light to be
Recall the expression for the Doppler shift if the receiver is directly approaching toward the transmitter.
Rearrange the expression in terms of
Substitute
The maximum wavelength shift in percentage of unshifted wavelength is given by the expression:
Here,
Substitute
Conclusion:
The maximum wavelength shifts in meters as well as in percentage of unshifted wavelength is calculated as
(d)
The reason behind the utmost importance given to the precision of the SETI radio receiver to measure frequency and wavelength.
(d)

Answer to Problem 26Q
Solution:
The Doppler shift calculated is very small
Explanation of Solution
Introduction:
Doppler Effect is defined as the phenomenon in which there is a sudden noticeable change in the pitch or wavelength when there is a relative motion between the transmitter and the receiver.
The expression for the Doppler shift if the receiver is directly approaching the transmitter is:
Here,
Explanation:
Recall the value of the maximum wavelength shift in meters, calculated in the previous part, that is, part (c).
Also recall the value of the maximum wavelength shift in percentage of unshifted wavelength.
It can be clearly observed from these two values that the wavelength of the receiving signal is very less. Therefore, to identify the Doppler shift, the SETI radio receiver must be highly precise. If the receiver is not precise and accurate, it would not detect such a small magnitude change and the signal from the alien planet would not be verified.
Conclusion:
The SETI radio receiver must be very precise to detect the very small shift in the wavelength due to Doppler effect.
Want to see more full solutions like this?
Chapter 27 Solutions
EBK LOOSE-LEAF VERSION OF UNIVERSE
- please answer this asap!!!!arrow_forwardRT = 4.7E-30 18V IT = 2.3E-3A+ 12 38Ω ли 56Ω ли r5 27Ω ли r3 28Ω r4 > 75Ω r6 600 0.343V 75.8A Now figure out how much current in going through the r4 resistor. |4 = unit And then use that current to find the voltage drop across the r resistor. V4 = unitarrow_forward7 Find the volume inside the cone z² = x²+y², above the (x, y) plane, and between the spheres x²+y²+z² = 1 and x² + y²+z² = 4. Hint: use spherical polar coordinates.arrow_forward
- ганм Two long, straight wires are oriented perpendicular to the page, as shown in the figure(Figure 1). The current in one wire is I₁ = 3.0 A, pointing into the page, and the current in the other wire is 12 4.0 A, pointing out of the page. = Find the magnitude and direction of the net magnetic field at point P. Express your answer using two significant figures. VO ΜΕ ΑΣΦ ? Figure P 5.0 cm 5.0 cm ₁ = 3.0 A 12 = 4.0 A B: μΤ You have already submitted this answer. Enter a new answer. No credit lost. Try again. Submit Previous Answers Request Answer 1 of 1 Part B X Express your answer using two significant figures. ΜΕ ΑΣΦ 0 = 0 ? below the dashed line to the right P You have already submitted this answer. Enter a new answer. No credit lost. Try again.arrow_forwardAn infinitely long conducting cylindrical rod with a positive charge λ per unit length is surrounded by a conducting cylindrical shell (which is also infinitely long) with a charge per unit length of −2λ and radius r1, as shown in the figure. What is σinner, the surface charge density (charge per unit area) on the inner surface of the conducting shell? What is σouter, the surface charge density on the outside of the conducting shell? (Recall from the problem statement that the conducting shell has a total charge per unit length given by −2λ.)arrow_forwardA small conducting spherical shell with inner radius aa and outer radius b is concentric with a larger conducting spherical shell with inner radius c and outer radius d (Figure 1). The inner shell has total charge +2q, and the outer shell has charge −2q. What's the total charge on the inner surface of the small shell? What's the total charge on the outer surface of the small shell? What's the total charge on the inner surface of the large shell? What's the total charge on the outer surface of the large shell?arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning





