Physics for Scientists and Engineers
Physics for Scientists and Engineers
6th Edition
ISBN: 9781429281843
Author: Tipler
Publisher: MAC HIGHER
bartleby

Videos

Question
Book Icon
Chapter 27, Problem 23P
To determine

The proof that dBzdz=0,d2Bzdz2=0andd3Bzdz3=0 .

Expert Solution & Answer
Check Mark

Answer to Problem 23P

It is proved that dBzdz=0,d2Bzdz2=0andd3Bzdz3=0 .

Explanation of Solution

Formula used:

The expression for total magnetic fieldis given by,

  Bz=μ0nR2I2(z11+z21)

Calculation:

The total magnetic fieldis calculated as,

  dBzdz=ddz( μ 0 n R 2 I2( z 1 1 + z 2 1 ))=( μ 0 n R 2 I2)(3z1 4 d z 1 dz3z2 4 d z 2 dz) ....... (1)

Differentiate z1=( z+ 1 2 R)2+R2 with respect to z .

  dz1dz=ddz( ( z+ 1 2 R ) 2 + R 2 )=12( ( ( z+ 1 2 R ) 2 + R 2 ) 1 2 )(2( z+ 1 2 R))=( z+ 1 2 R)z1

Differentiate z2=( z 1 2 R)2+R2 with respect to z .

  dz2dz=ddz( ( z 1 2 R ) 2 + R 2 )=12( ( ( z 1 2 R ) 2 + R 2 ) 1 2 )(2( z 1 2 R))=( z 1 2 R)z2

Substitute (z+12R)z1 for dz1dz and (z12R)z2 for dz2dz in equation (1).

  dBzdz=( μ 0 n R 2 I2)(3z1 4( ( z+ 1 2 R ) z 1 )3z2 4( ( z 1 2 R ) z 2 ))=( μ 0 n R 2 I2)( 3( z+ 1 2 R ) z 1 5 + 3( z 1 2 R ) z 2 5 ) ....... (2)

Substitute 0 for z 54R2 for z1 and 54R2 for z2 in equation (2).

  dBzdz=( μ 0 n R 2 I2)( 3( 0+ 1 2 R ) 5 4 R 2 + 3( 0 1 2 R ) 5 4 R 2 )=0

Differentiate equation (2) with respect to z .

  d2Bzdz2=ddz[( μ 0 n R 2 I 2)( 3( z+ 1 2 R ) z 1 5 + 3( z 1 2 R ) z 2 5 )]=( μ 0 n R 2 I2)(3)( ( 1 z 1 5 5( z+ 1 2 R ) z 1 6 ( d z 1 dz ) ) +( 1 z 2 5 5( z+ 1 2 R ) z 2 6 ( d z 2 dz ) )) ....... (3)

Substitute (z+12R)z1 for dz1dz and (z12R)z2 for dz2dz in equation (3).

  d2Bzdz2=( μ 0 n R 2 I2)(3)( ( 1 z 1 5 5( z+ 1 2 R ) z 1 6 ( ( z+ 1 2 R ) z 1 ) ) +( 1 z 2 5 5( z+ 1 2 R ) z 2 6 ( ( z 1 2 R ) z 2 ) ))=( μ 0 n R 2 I2)(3)(( 1 z 1 5 5 ( z+ 1 2 R ) 2 z 1 7 )+( 1 z 2 5 5 ( z 1 2 R ) 2 z 2 7 )) ....... (4)

Substitute 0 for z 54R2 for z1 and 54R2 for z2 in equation (4).

  d2Bzdz2=( μ 0 n R 2 I2)(3)(( 1 ( 5 4 R 2 ) 5 2 5 ( 0+ 1 2 R ) 2 ( 5 4 R 2 ) 7 2 )+( 1 ( 5 4 R 2 ) 5 2 5 ( 0 1 2 R ) 2 ( 5 4 R 2 ) 7 2 ))=( μ 0 n R 2 I2)(3)(1 ( 5 4 R 2 ) 5 2 1 ( 5 4 R 2 ) 5 2 +1 ( 5 4 R 2 ) 5 2 +1 ( 5 4 R 2 ) 5 2 )=0

Differentiate equation (4) with respect to z .

  d3Bzdz3=ddz[( μ 0 n R 2 I 2)(3)(( 1 z 1 5 5 ( z+ 1 2 R ) 2 z 1 7 )+( 1 z 2 5 5 ( z 1 2 R ) 2 z 2 7 ))]=( μ 0 n R 2 I2)(3)[( 5 z 1 6 ( d z 1 dz ) 10( z+ 1 2 R ) z 1 7 35 ( z+ 1 2 R ) 2 z 1 8 ( d z 1 dz ) )+( 5 z 1 6 ( d z 2 dz ) 10( z 1 2 R ) z 1 7 35 ( z 1 2 R ) 2 z 1 8 ( d z 2 dz ) )] ....... (5)

Substitute (z+12R)z1 for dz1dz and (z12R)z2 for dz2dz in equation (5)

   d 3 B z d z 3 =( μ 0 n R 2 I 2 )( 3 )[ ( 5 z 1 6 ( ( z+ 1 2 R ) z 1 ) 10( z+ 1 2 R ) z 1 7 35 ( z+ 1 2 R ) 2 z 1 8 ( ( z+ 1 2 R ) z 1 ) )+ ( 5 z 1 6 ( ( z 1 2 R ) z 1 ) 10( z 1 2 R ) z 1 7 35 ( z 1 2 R ) 2 z 1 8 ( ( z 1 2 R ) z 1 ) ) ]

   =( μ 0 n R 2 I 2 )( 3 )( 15( z+ 1 2 R ) z 1 7 + 35 ( z+ 1 2 R ) 3 z 1 9 15( z 1 2 R ) z 2 7 + 35 ( z 1 2 R ) 2 z 2 9 )........ (6)

Substitute 0 for z 54R2 for z1 and 54R2 for z2 in equation (6).

  d3Bzdz3=( μ 0 n R 2 I2)(3)( 15( 0+ 1 2 R ) ( 5 4 R 2 ) 7 2 + 35 ( 0+ 1 2 R ) 3 ( 5 4 R 2 ) 9 2 15( z 1 2 R ) ( 5 4 R 2 ) 7 2 + 35 ( z 1 2 R ) 2 ( 5 4 R 2 ) 9 2 )=0

Conclusion:

Therefore, it is proved that dBzdz=0,d2Bzdz2=0andd3Bzdz3=0 .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Given that B= 6x ax - 9y ay + 3z az Wb/m^2 , find the total force experienced by the rectangular loop (in the z=0 plane) shown in the figure
An infinite current sheet lies in the plane z0 with z = everywhere. tilde K =K hat a y Obtain the magnetic vector potential
Two wires AC and BC are attached to a 7 Kg sphere that It rotates at constant speed v in the horizontal circle shown in the figure. Yes θ1 = 55° and θ2= 30 ° and d 1.4 m, determine the range of values of v for which both wires are held taut.

Chapter 27 Solutions

Physics for Scientists and Engineers

Ch. 27 - Prob. 11PCh. 27 - Prob. 12PCh. 27 - Prob. 13PCh. 27 - Prob. 14PCh. 27 - Prob. 15PCh. 27 - Prob. 16PCh. 27 - Prob. 17PCh. 27 - Prob. 18PCh. 27 - Prob. 19PCh. 27 - Prob. 20PCh. 27 - Prob. 21PCh. 27 - Prob. 22PCh. 27 - Prob. 23PCh. 27 - Prob. 24PCh. 27 - Prob. 25PCh. 27 - Prob. 26PCh. 27 - Prob. 27PCh. 27 - Prob. 28PCh. 27 - Prob. 29PCh. 27 - Prob. 30PCh. 27 - Prob. 31PCh. 27 - Prob. 32PCh. 27 - Prob. 33PCh. 27 - Prob. 34PCh. 27 - Prob. 35PCh. 27 - Prob. 36PCh. 27 - Prob. 37PCh. 27 - Prob. 38PCh. 27 - Prob. 39PCh. 27 - Prob. 40PCh. 27 - Prob. 41PCh. 27 - Prob. 42PCh. 27 - Prob. 43PCh. 27 - Prob. 44PCh. 27 - Prob. 45PCh. 27 - Prob. 46PCh. 27 - Prob. 47PCh. 27 - Prob. 48PCh. 27 - Prob. 49PCh. 27 - Prob. 50PCh. 27 - Prob. 51PCh. 27 - Prob. 52PCh. 27 - Prob. 53PCh. 27 - Prob. 54PCh. 27 - Prob. 55PCh. 27 - Prob. 56PCh. 27 - Prob. 57PCh. 27 - Prob. 58PCh. 27 - Prob. 59PCh. 27 - Prob. 60PCh. 27 - Prob. 61PCh. 27 - Prob. 62PCh. 27 - Prob. 63PCh. 27 - Prob. 64PCh. 27 - Prob. 65PCh. 27 - Prob. 66PCh. 27 - Prob. 67PCh. 27 - Prob. 68PCh. 27 - Prob. 69PCh. 27 - Prob. 70PCh. 27 - Prob. 71PCh. 27 - Prob. 72PCh. 27 - Prob. 73PCh. 27 - Prob. 74PCh. 27 - Prob. 75PCh. 27 - Prob. 76PCh. 27 - Prob. 77PCh. 27 - Prob. 78PCh. 27 - Prob. 79PCh. 27 - Prob. 80PCh. 27 - Prob. 81PCh. 27 - Prob. 82PCh. 27 - Prob. 83PCh. 27 - Prob. 84PCh. 27 - Prob. 85PCh. 27 - Prob. 86PCh. 27 - Prob. 87PCh. 27 - Prob. 88PCh. 27 - Prob. 89PCh. 27 - Prob. 90PCh. 27 - Prob. 91PCh. 27 - Prob. 92PCh. 27 - Prob. 93PCh. 27 - Prob. 94PCh. 27 - Prob. 95PCh. 27 - Prob. 96PCh. 27 - Prob. 97PCh. 27 - Prob. 98P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
What is Electromagnetic Induction? | Faraday's Laws and Lenz Law | iKen | iKen Edu | iKen App; Author: Iken Edu;https://www.youtube.com/watch?v=3HyORmBip-w;License: Standard YouTube License, CC-BY