BIO Predict/Explain Octopus Eyes To focus its eyes, an octopus does not change the shape of its lens, as is the case in humans Instead, an octopus moves its rigid lens back and forth, as in a camera This changes the distance from the lens to the retina and brings an object into focus. (a) If an object moves closer to an octopus, must the octopus move its lens closer to or farther from its retina to keep the object in focus? (b) Choose the best explanation from among the following: I. The lens must move closer to the retina—that is, farther away from the object—to compensate for the object moving closer to the eye. II. When the object moves closer to the eye, the image produced by the lens will be farther behind the lens; therefore, the lens must move farther from the retina.
BIO Predict/Explain Octopus Eyes To focus its eyes, an octopus does not change the shape of its lens, as is the case in humans Instead, an octopus moves its rigid lens back and forth, as in a camera This changes the distance from the lens to the retina and brings an object into focus. (a) If an object moves closer to an octopus, must the octopus move its lens closer to or farther from its retina to keep the object in focus? (b) Choose the best explanation from among the following: I. The lens must move closer to the retina—that is, farther away from the object—to compensate for the object moving closer to the eye. II. When the object moves closer to the eye, the image produced by the lens will be farther behind the lens; therefore, the lens must move farther from the retina.
BIO Predict/Explain Octopus Eyes To focus its eyes, an octopus does not change the shape of its lens, as is the case in humans Instead, an octopus moves its rigid lens back and forth, as in a camera This changes the distance from the lens to the retina and brings an object into focus. (a) If an object moves closer to an octopus, must the octopus move its lens closer to or farther from its retina to keep the object in focus? (b) Choose the best explanation from among the following:
I. The lens must move closer to the retina—that is, farther away from the object—to compensate for the object moving closer to the eye.
II. When the object moves closer to the eye, the image produced by the lens will be farther behind the lens; therefore, the lens must move farther from the retina.
For each of the actions depicted below, a magnet and/or metal loop moves with velocity v→ (v→ is constant and has the same magnitude in all parts). Determine whether a current is induced in the metal loop. If so, indicate the direction of the current in the loop, either clockwise or counterclockwise when seen from the right of the loop. The axis of the magnet is lined up with the center of the loop. For the action depicted in (Figure 5), indicate the direction of the induced current in the loop (clockwise, counterclockwise or zero, when seen from the right of the loop). I know that the current is clockwise, I just dont understand why. Please fully explain why it's clockwise, Thank you
A planar double pendulum consists of two point masses \[m_1 = 1.00~\mathrm{kg}, \qquad m_2 = 1.00~\mathrm{kg}\]connected by massless, rigid rods of lengths \[L_1 = 1.00~\mathrm{m}, \qquad L_2 = 1.20~\mathrm{m}.\]The upper rod is hinged to a fixed pivot; gravity acts vertically downward with\[g = 9.81~\mathrm{m\,s^{-2}}.\]Define the generalized coordinates \(\theta_1,\theta_2\) as the angles each rod makes with thedownward vertical (positive anticlockwise, measured in radians unless stated otherwise).At \(t=0\) the system is released from rest with \[\theta_1(0)=120^{\circ}, \qquad\theta_2(0)=-10^{\circ}, \qquad\dot{\theta}_1(0)=\dot{\theta}_2(0)=0 .\]Using the exact nonlinear equations of motion (no small-angle or planar-pendulumapproximations) and assuming the rods never stretch or slip, determine the angle\(\theta_2\) at the instant\[t = 10.0~\mathrm{s}.\]Give the result in degrees, in the interval \((-180^{\circ},180^{\circ}]\).
What are the expected readings of the ammeter and voltmeter for the circuit in the figure below? (R = 5.60 Ω, ΔV = 6.30 V)
ammeter
I =
Chapter 27 Solutions
Modified Mastering Physics with Pearson eText -- Access Card -- for Physics (18-Weeks)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.