
Essential Calculus: Early Transcendentals
2nd Edition
ISBN: 9781133112280
Author: James Stewart
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 2.7, Problem 1E
To determine
To find: The derivative
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
(7) (12 points) Let F(x, y, z) = (y, x+z cos yz, y cos yz).
Ꮖ
(a) (4 points) Show that V x F = 0.
(b) (4 points) Find a potential f for the vector field F.
(c) (4 points) Let S be a surface in R3 for which the Stokes' Theorem is valid. Use
Stokes' Theorem to calculate the line integral
Jos
F.ds;
as denotes the boundary of S. Explain your answer.
(3) (16 points) Consider
z = uv,
u = x+y,
v=x-y.
(a) (4 points) Express z in the form z = fog where g: R² R² and f: R² →
R.
(b) (4 points) Use the chain rule to calculate Vz = (2, 2). Show all intermediate
steps otherwise no credit.
(c) (4 points) Let S be the surface parametrized by
T(x, y) = (x, y, ƒ (g(x, y))
(x, y) = R².
Give a parametric description of the tangent plane to S at the point p = T(x, y).
(d) (4 points) Calculate the second Taylor polynomial Q(x, y) (i.e. the quadratic
approximation) of F = (fog) at a point (a, b). Verify that
Q(x,y) F(a+x,b+y).
=
(6) (8 points) Change the order of integration and evaluate
(z +4ry)drdy .
So S√ ²
0
Chapter 2 Solutions
Essential Calculus: Early Transcendentals
Ch. 2.1 - (a) Find the slope of the tangent line to the...Ch. 2.1 - (a) Find the slope of the tangent line to the...Ch. 2.1 - Find an equation of the tangent line to the curve...Ch. 2.1 - Find an equation of the tangent line to the curve...Ch. 2.1 - Find an equation of the tangent line to the curve...Ch. 2.1 - Find an equation of the tangent line to the curve...Ch. 2.1 - (a) Find the slope of the tangent to the curve y =...Ch. 2.1 - (a) Find the slope of the tangent to the curve...Ch. 2.1 - The graph shows the position function of a car....Ch. 2.1 - Shown are graphs of the position functions of two...
Ch. 2.1 - If a ball is thrown into the air with a velocity...Ch. 2.1 - If an arrow is shot upward on the moon with a...Ch. 2.1 - The displacement (in meters) of a particle moving...Ch. 2.1 - The displacement (in meters) of a particle moving...Ch. 2.1 - Prob. 15ECh. 2.1 - Find an equation of the tangent line to the graph...Ch. 2.1 - If an equation of the tangent tine to the curve y...Ch. 2.1 - If the tangent line to y= f(x) at (4, 3) passes...Ch. 2.1 - Sketch the graph of a function f for which f(0) =...Ch. 2.1 - Sketch the graph of a function g for which g(0) =...Ch. 2.1 - If f(x) = 3x2 x3 , find f'(l) and use it to find...Ch. 2.1 - Prob. 22ECh. 2.1 - (a) If F(x) = 5x/(l + x2), find F'(2) and use it...Ch. 2.1 - Prob. 24ECh. 2.1 - Find f'(a). f(x) = 3x2 4x + 1Ch. 2.1 - Find f'(a). f(t) = 2t3 + tCh. 2.1 - Prob. 27ECh. 2.1 - Prob. 28ECh. 2.1 - Prob. 29ECh. 2.1 - Prob. 30ECh. 2.1 - Each limit represents the derivative of some...Ch. 2.1 - Each limit represents the derivative of some...Ch. 2.1 - Prob. 33ECh. 2.1 - Prob. 34ECh. 2.1 - Prob. 35ECh. 2.1 - 3136 Each limit represents the derivative of some...Ch. 2.1 - Prob. 37ECh. 2.1 - Prob. 38ECh. 2.1 - The number N of US cellular phone subscribers (in...Ch. 2.1 - The number N of locations of a popular coffeehouse...Ch. 2.1 - Prob. 41ECh. 2.1 - If a cylindrical tank holds 100,000 gallons of...Ch. 2.1 - The cost of producing x ounces of gold from a new...Ch. 2.1 - The number of bacteria after r hours in a...Ch. 2.1 - Prob. 45ECh. 2.1 - Prob. 46ECh. 2.1 - Prob. 47ECh. 2.1 - The graph shows the influence of the temperature T...Ch. 2.1 - Prob. 49ECh. 2.1 - Prob. 50ECh. 2.2 - Use the given graph to estimate the value of each...Ch. 2.2 - Use the given graph to estimate the value of each...Ch. 2.2 - Match the graph of each function in (a)(d) with...Ch. 2.2 - Trace or copy the graph of the given function .f....Ch. 2.2 - Trace or copy the graph of the given function .f....Ch. 2.2 - Prob. 6ECh. 2.2 - Prob. 7ECh. 2.2 - Prob. 8ECh. 2.2 - Prob. 9ECh. 2.2 - Trace or copy the graph of the given function .f....Ch. 2.2 - Trace or copy the graph of the given function .f....Ch. 2.2 - Shown is the graph of the population function P(t)...Ch. 2.2 - Prob. 13ECh. 2.2 - Prob. 14ECh. 2.2 - Prob. 15ECh. 2.2 - Prob. 16ECh. 2.2 - Prob. 17ECh. 2.2 - Prob. 18ECh. 2.2 - Find the derivative of the function using the...Ch. 2.2 - Find the derivative of the function using the...Ch. 2.2 - Find the derivative of the function using the...Ch. 2.2 - Find the derivative of the function using the...Ch. 2.2 - Find the derivative of the function using the...Ch. 2.2 - Find the derivative of the function using the...Ch. 2.2 - Prob. 25ECh. 2.2 - Prob. 26ECh. 2.2 - Prob. 27ECh. 2.2 - Prob. 28ECh. 2.2 - Prob. 29ECh. 2.2 - Prob. 30ECh. 2.2 - The unemployment rate U(t) varies with time. The...Ch. 2.2 - Prob. 32ECh. 2.2 - Prob. 33ECh. 2.2 - Prob. 34ECh. 2.2 - Prob. 35ECh. 2.2 - The graph of f is given. State, with reasons, the...Ch. 2.2 - Prob. 37ECh. 2.2 - Prob. 38ECh. 2.2 - Prob. 39ECh. 2.2 - Prob. 40ECh. 2.2 - Prob. 41ECh. 2.2 - Use the definition of a derivative to find f'(x)...Ch. 2.2 - Prob. 42ECh. 2.2 - If f(x) = 2x2 x3, find f'(x), f"(x), f'"(x), and...Ch. 2.2 - Prob. 45ECh. 2.2 - Prob. 46ECh. 2.2 - Prob. 47ECh. 2.2 - Where is the greatest integer function f(x) = [[ x...Ch. 2.2 - Prob. 49ECh. 2.2 - Prob. 50ECh. 2.2 - Prob. 51ECh. 2.3 - Differentiate the function. f(x) = 240Ch. 2.3 - Differentiate the function. f(x)=2Ch. 2.3 - Differentiate the function. f(t)=223tCh. 2.3 - Differentiate the function. F(x)=34x8Ch. 2.3 - Prob. 5ECh. 2.3 - Differentiate the function. f(t) = 1.4t5 2.5t2+...Ch. 2.3 - Prob. 9ECh. 2.3 - Prob. 10ECh. 2.3 - Prob. 11ECh. 2.3 - Differentiate the function. B(y) = cy6Ch. 2.3 - Differentiate the function. A(s)=12s5Ch. 2.3 - Prob. 14ECh. 2.3 - Prob. 15ECh. 2.3 - Differentiate the function. y=x(x1)Ch. 2.3 - Prob. 17ECh. 2.3 - Prob. 20ECh. 2.3 - Prob. 21ECh. 2.3 - Prob. 18ECh. 2.3 - Differentiate the function. z=Ay10+BcosyCh. 2.3 - Prob. 22ECh. 2.3 - Differentiate the function. y=x2+4x+3xCh. 2.3 - Differentiate the function. y=sin2+cCh. 2.3 - Prob. 25ECh. 2.3 - Prob. 26ECh. 2.3 - Prob. 7ECh. 2.3 - Prob. 8ECh. 2.3 - Prob. 27ECh. 2.3 - Prob. 28ECh. 2.3 - Prob. 29ECh. 2.3 - Prob. 30ECh. 2.3 - Prob. 31ECh. 2.3 - Prob. 34ECh. 2.3 - Prob. 33ECh. 2.3 - Prob. 32ECh. 2.3 - Prob. 43ECh. 2.3 - Prob. 44ECh. 2.3 - Prob. 55ECh. 2.3 - Find the points on the curve y = 2x3 + 3x2 12x +...Ch. 2.3 - Prob. 37ECh. 2.3 - Show that the curve y = 6x3 + 5x 3 has no tangent...Ch. 2.3 - Find an equation of the tangent line to the curve...Ch. 2.3 - Prob. 41ECh. 2.3 - Prob. 42ECh. 2.3 - Prob. 61ECh. 2.3 - Prob. 62ECh. 2.3 - Prob. 57ECh. 2.3 - Prob. 36ECh. 2.3 - Prob. 59ECh. 2.3 - Prob. 65ECh. 2.3 - Prob. 64ECh. 2.3 - Prob. 48ECh. 2.3 - Prob. 58ECh. 2.3 - Prob. 60ECh. 2.3 - Prob. 67ECh. 2.3 - Prob. 66ECh. 2.3 - For what values of a and b is the line 2x + y = b...Ch. 2.3 - Prob. 68ECh. 2.3 - Prob. 69ECh. 2.3 - Draw a diagram showing two perpendicular lines...Ch. 2.3 - Prob. 71ECh. 2.3 - Prob. 72ECh. 2.3 - Prob. 35ECh. 2.3 - Prob. 45ECh. 2.3 - Prob. 46ECh. 2.3 - If a ball is thrown vertically upward with a...Ch. 2.3 - If a rock is thrown vertically upward from the...Ch. 2.3 - The position function of a particle is given by s...Ch. 2.3 - Prob. 53ECh. 2.3 - Prob. 54ECh. 2.3 - Prob. 56ECh. 2.3 - Prob. 51ECh. 2.3 - The cost function for production of a commodity is...Ch. 2.4 - Find the derivative of f(x) = (1 + 2x2)(x x2) in...Ch. 2.4 - Find the derivative o f the function...Ch. 2.4 - Differentiate. g(t)=t3costCh. 2.4 - Differentiate. f(x)=xsinxCh. 2.4 - Differentiate. g(x)=1+2x34xCh. 2.4 - Differentiate. G(x)=x222x+1Ch. 2.4 - Differentiate. h()=csccotCh. 2.4 - Differentiate. J(v) = (v3 2v)(v4 + v2)Ch. 2.4 - Prob. 5ECh. 2.4 - Differentiate. y=sincosCh. 2.4 - Differentiate. y=x31x2Ch. 2.4 - Differentiate. y=x+1x3+x2Ch. 2.4 - Differentiate. y=v32vvvCh. 2.4 - Differentiate. g(t)=ttt1/3Ch. 2.4 - Differentiate. f(t)=2t2+tCh. 2.4 - Differentiate. y=x1x+1Ch. 2.4 - Differentiate. f()=sec1+secCh. 2.4 - Differentiate. y=1secxtanxCh. 2.4 - Prob. 24ECh. 2.4 - Differentiate. f(x)=xx+cxCh. 2.4 - Find an equation of the tangent line to the given...Ch. 2.4 - Find an equation of the tangent line to the given...Ch. 2.4 - Prob. 31ECh. 2.4 - Prob. 32ECh. 2.4 - Prob. 33ECh. 2.4 - Prob. 41ECh. 2.4 - Prob. 42ECh. 2.4 - If f and g are the functions whose graphs are...Ch. 2.4 - Let P(x) = F(x)G(x) and Q(x) = F(x)/G(x), where F...Ch. 2.4 - Prob. 45ECh. 2.4 - Prob. 46ECh. 2.4 - Prob. 47ECh. 2.4 - Prob. 48ECh. 2.4 - Prob. 49ECh. 2.4 - Prob. 50ECh. 2.4 - Prob. 53ECh. 2.4 - Prob. 54ECh. 2.4 - Prob. 55ECh. 2.4 - Prob. 56ECh. 2.4 - Prob. 57ECh. 2.4 - Prob. 26ECh. 2.4 - Prob. 7ECh. 2.4 - Differentiate. y = 2 sec x csc xCh. 2.4 - Prob. 19ECh. 2.4 - Differentiate. y=cosx1sinxCh. 2.4 - Prob. 23ECh. 2.4 - Prob. 37ECh. 2.4 - Prob. 38ECh. 2.4 - Prob. 39ECh. 2.4 - Find an equation of the tangent line to the curve...Ch. 2.4 - Prob. 30ECh. 2.4 - Prob. 35ECh. 2.4 - Prob. 34ECh. 2.4 - Prob. 40ECh. 2.4 - A mass on a spring vibrates horizontally on a...Ch. 2.4 - Prob. 52ECh. 2.4 - Prob. 36ECh. 2.5 - Write the composite function in the form f(g(x))....Ch. 2.5 - Write the composite function in the form f(g(x))....Ch. 2.5 - Write the composite function in the form f(g(x))....Ch. 2.5 - Write the composite function in the form f(g(x))....Ch. 2.5 - Write the composite function in the form f(g(x))....Ch. 2.5 - Write the composite function in the form f(g(x))....Ch. 2.5 - Find the derivative of the function. F(x) = (x4 +...Ch. 2.5 - Find the derivative of the function. F(x) = (4x ...Ch. 2.5 - Find the derivative of the function. F(x)=12xCh. 2.5 - Find the derivative of the function....Ch. 2.5 - Prob. 11ECh. 2.5 - Find the derivative of the function. f(t)=1+tant3Ch. 2.5 - Prob. 13ECh. 2.5 - Prob. 14ECh. 2.5 - Prob. 15ECh. 2.5 - Prob. 16ECh. 2.5 - Find the derivative of the function. f(x) = (2x ...Ch. 2.5 - Find the derivative of the function. g(x) = (x2 +...Ch. 2.5 - Prob. 19ECh. 2.5 - Prob. 20ECh. 2.5 - Find the derivative of the function. y=(x2+1x21)3Ch. 2.5 - Find the derivative of the function. f(s)=s2+1s2+4Ch. 2.5 - Find the derivative of the function. y=sin(xcosx)Ch. 2.5 - Prob. 24ECh. 2.5 - Prob. 25ECh. 2.5 - Prob. 26ECh. 2.5 - Prob. 27ECh. 2.5 - Prob. 28ECh. 2.5 - Prob. 29ECh. 2.5 - Prob. 30ECh. 2.5 - Prob. 31ECh. 2.5 - Prob. 32ECh. 2.5 - Prob. 33ECh. 2.5 - Prob. 34ECh. 2.5 - Find the derivative of the function. y = cot2(sin...Ch. 2.5 - Prob. 36ECh. 2.5 - 742 Find the derivative of the function. 37....Ch. 2.5 - Find the derivative of the function. y=x+x+xCh. 2.5 - Prob. 39ECh. 2.5 - 742 Find the derivative of the function. 40....Ch. 2.5 - Prob. 41ECh. 2.5 - Prob. 42ECh. 2.5 - Prob. 43ECh. 2.5 - Prob. 44ECh. 2.5 - Prob. 45ECh. 2.5 - Prob. 46ECh. 2.5 - Prob. 48ECh. 2.5 - Prob. 47ECh. 2.5 - Prob. 49ECh. 2.5 - Prob. 50ECh. 2.5 - Prob. 51ECh. 2.5 - Prob. 52ECh. 2.5 - Prob. 53ECh. 2.5 - Prob. 54ECh. 2.5 - A table of values for f, g, f, and g is given. (a)...Ch. 2.5 - Prob. 56ECh. 2.5 - Prob. 57ECh. 2.5 - Prob. 58ECh. 2.5 - Prob. 59ECh. 2.5 - Prob. 60ECh. 2.5 - Prob. 61ECh. 2.5 - Prob. 62ECh. 2.5 - Prob. 75ECh. 2.5 - Prob. 76ECh. 2.5 - Prob. 63ECh. 2.5 - Prob. 64ECh. 2.5 - Prob. 65ECh. 2.5 - Prob. 66ECh. 2.5 - Prob. 67ECh. 2.5 - Prob. 68ECh. 2.5 - Prob. 69ECh. 2.5 - Air is being pumped into a spherical weather...Ch. 2.5 - Prob. 72ECh. 2.5 - Prob. 71ECh. 2.5 - Prob. 74ECh. 2.5 - Use the Chain Rule to show that if is measured in...Ch. 2.5 - Prob. 78ECh. 2.5 - Prob. 77ECh. 2.6 - (a) Find y by implicit differentiation. (b) Solve...Ch. 2.6 - (a) Find y by implicit differentiation. (b) Solve...Ch. 2.6 - Find dy/dx by implicit differentiation. x3 + y3 =...Ch. 2.6 - Find dy/dx by implicit differentiation. 2x3 + x2y ...Ch. 2.6 - Prob. 5ECh. 2.6 - Find dy/dx by implicit differentiation. y5 + x2y3...Ch. 2.6 - Find dy/dx by implicit differentiation. 11. y cos...Ch. 2.6 - Find dy/dx by implicit differentiation. 12....Ch. 2.6 - Prob. 9ECh. 2.6 - Prob. 10ECh. 2.6 - Prob. 11ECh. 2.6 - Find dy/dx by implicit differentiation. x+y=1+x2y2Ch. 2.6 - 3-16 Find dy/dx by implicit differentiation. 13....Ch. 2.6 - Prob. 14ECh. 2.6 - Prob. 15ECh. 2.6 - Find dy/dx by implicit differentiation. 20....Ch. 2.6 - Prob. 17ECh. 2.6 - If g(x) + x sin g(x) = x2, find g(0).Ch. 2.6 - Use implicit differentiation to find an equation...Ch. 2.6 - Prob. 19ECh. 2.6 - Use implicit differentiation to find an equation...Ch. 2.6 - Prob. 22ECh. 2.6 - Use implicit differentiation to find an equation...Ch. 2.6 - Prob. 24ECh. 2.6 - Prob. 29ECh. 2.6 - Prob. 30ECh. 2.6 - Prob. 25ECh. 2.6 - Prob. 26ECh. 2.6 - Prob. 27ECh. 2.6 - Prob. 28ECh. 2.6 - Find the points on the lemniscate in Exercise 23...Ch. 2.6 - Show by implicit differentiation that the tangent...Ch. 2.6 - Show that the sum of the x-and y-intercepts of any...Ch. 2.6 - Prob. 41ECh. 2.6 - Prob. 35ECh. 2.6 - Prob. 36ECh. 2.6 - Prob. 37ECh. 2.6 - Prob. 38ECh. 2.6 - Prob. 47ECh. 2.6 - Prob. 48ECh. 2.6 - Prob. 39ECh. 2.6 - Prob. 43ECh. 2.6 - Prob. 44ECh. 2.6 - Prob. 45ECh. 2.6 - Prob. 46ECh. 2.6 - Prob. 49ECh. 2.6 - Prob. 50ECh. 2.7 - Prob. 1ECh. 2.7 - (a) If A is the area of a circle with radius r and...Ch. 2.7 - Prob. 3ECh. 2.7 - The length of a rectangle is increasing at a rate...Ch. 2.7 - A cylindrical tank with radius 5 m is being filled...Ch. 2.7 - The radius of a sphere is increasing at a rate of...Ch. 2.7 - Prob. 7ECh. 2.7 - Prob. 8ECh. 2.7 - Prob. 9ECh. 2.7 - A particle is moving along a hyperbola xy = 8. As...Ch. 2.7 - Prob. 13ECh. 2.7 - (a) What quantities are given in the problem? (b)...Ch. 2.7 - (a) What quantities are given in the problem? (b)...Ch. 2.7 - (a) What quantities are given in the problem? (b)...Ch. 2.7 - Two cars start moving from the same point. One...Ch. 2.7 - A spotlight on the ground shines on a wall 12m...Ch. 2.7 - Prob. 17ECh. 2.7 - Prob. 18ECh. 2.7 - Prob. 19ECh. 2.7 - Prob. 20ECh. 2.7 - Prob. 21ECh. 2.7 - Prob. 22ECh. 2.7 - Prob. 24ECh. 2.7 - A trough is 10 ft long and its ends have the shape...Ch. 2.7 - Prob. 26ECh. 2.7 - Prob. 27ECh. 2.7 - Prob. 28ECh. 2.7 - Prob. 29ECh. 2.7 - Prob. 30ECh. 2.7 - Prob. 31ECh. 2.7 - Prob. 32ECh. 2.7 - Prob. 33ECh. 2.7 - Prob. 34ECh. 2.7 - Prob. 35ECh. 2.7 - Prob. 36ECh. 2.7 - Prob. 23ECh. 2.7 - Prob. 37ECh. 2.7 - A lighthouse is located on a small island 3 km...Ch. 2.7 - Prob. 39ECh. 2.7 - Prob. 40ECh. 2.7 - Prob. 41ECh. 2.7 - Prob. 42ECh. 2.8 - Find the linearization L(x) of the function at a....Ch. 2.8 - Prob. 2ECh. 2.8 - Prob. 3ECh. 2.8 - Prob. 4ECh. 2.8 - Prob. 5ECh. 2.8 - Prob. 6ECh. 2.8 - Prob. 7ECh. 2.8 - Prob. 10ECh. 2.8 - 7-10 Verify the given linear approximation at a =...Ch. 2.8 - Prob. 8ECh. 2.8 - Prob. 18ECh. 2.8 - Prob. 17ECh. 2.8 - Let y = tan x. (a) Find the differential dy. (b)...Ch. 2.8 - Let y = tan x. (a) Find the differential dy. (b)...Ch. 2.8 - Prob. 11ECh. 2.8 - Prob. 14ECh. 2.8 - Use a linear approximation (or differentials) to...Ch. 2.8 - Prob. 13ECh. 2.8 - Prob. 15ECh. 2.8 - Prob. 16ECh. 2.8 - Prob. 21ECh. 2.8 - Prob. 22ECh. 2.8 - The circumference of a sphere was measured to be...Ch. 2.8 - Prob. 24ECh. 2.8 - One side of a right triangle is known to be 20 cm...Ch. 2.8 - Prob. 25ECh. 2.8 - When blood flows along a blood vessel, the flux F...Ch. 2.8 - Prob. 28ECh. 2.8 - Prob. 29ECh. 2.8 - Suppose that we dont have a formula for g(x) but...Ch. 2 - Prob. 1RCCCh. 2 - Prob. 2RCCCh. 2 - Prob. 4RCCCh. 2 - Prob. 3RCCCh. 2 - Prob. 5RCCCh. 2 - Prob. 6RCCCh. 2 - Prob. 7RCCCh. 2 - Prob. 1RQCh. 2 - Prob. 8RQCh. 2 - Determine whether the statement is true or false....Ch. 2 - Prob. 2RECh. 2 - Prob. 3RECh. 2 - Prob. 4RECh. 2 - Prob. 5RECh. 2 - Prob. 6RECh. 2 - Prob. 63RECh. 2 - Prob. 7RECh. 2 - Prob. 9RECh. 2 - Prob. 8RECh. 2 - Prob. 8RCCCh. 2 - Prob. 9RCCCh. 2 - Prob. 10RCCCh. 2 - Prob. 11RCCCh. 2 - Prob. 2RQCh. 2 - Prob. 3RQCh. 2 - Prob. 4RQCh. 2 - Prob. 5RQCh. 2 - Prob. 6RQCh. 2 - Prob. 12RQCh. 2 - Prob. 7RQCh. 2 - Prob. 11RQCh. 2 - Prob. 9RQCh. 2 - Prob. 13RECh. 2 - Prob. 14RECh. 2 - Prob. 15RECh. 2 - Prob. 16RECh. 2 - Prob. 17RECh. 2 - Prob. 19RECh. 2 - Prob. 33RECh. 2 - Prob. 1RECh. 2 - Prob. 10RECh. 2 - Prob. 11RECh. 2 - Prob. 12RECh. 2 - Prob. 18RECh. 2 - Prob. 20RECh. 2 - Prob. 21RECh. 2 - Prob. 22RECh. 2 - Prob. 23RECh. 2 - Prob. 25RECh. 2 - Prob. 26RECh. 2 - Prob. 36RECh. 2 - Prob. 37RECh. 2 - Prob. 38RECh. 2 - Prob. 24RECh. 2 - Prob. 27RECh. 2 - Prob. 28RECh. 2 - Prob. 29RECh. 2 - Prob. 30RECh. 2 - Prob. 31RECh. 2 - Prob. 39RECh. 2 - Prob. 35RECh. 2 - Prob. 32RECh. 2 - Prob. 34RECh. 2 - Prob. 40RECh. 2 - Prob. 41RECh. 2 - Prob. 42RECh. 2 - Prob. 43RECh. 2 - Prob. 44RECh. 2 - Prob. 45RECh. 2 - Prob. 46RECh. 2 - Prob. 47RECh. 2 - Prob. 48RECh. 2 - Prob. 49RECh. 2 - Prob. 50RECh. 2 - Prob. 51RECh. 2 - 70. If f and g are the functions whose graphs are...Ch. 2 - Prob. 53RECh. 2 - Prob. 54RECh. 2 - Prob. 55RECh. 2 - Prob. 57RECh. 2 - Prob. 56RECh. 2 - Prob. 58RECh. 2 - Prob. 59RECh. 2 - Prob. 60RECh. 2 - Prob. 61RECh. 2 - Prob. 62RECh. 2 - Prob. 65RECh. 2 - Prob. 64RECh. 2 - Prob. 66RECh. 2 - Prob. 67RECh. 2 - Prob. 68RECh. 2 - Prob. 69RECh. 2 - Prob. 70RECh. 2 - Prob. 71RECh. 2 - Prob. 72RECh. 2 - Prob. 73RECh. 2 - Prob. 74RECh. 2 - Prob. 75RECh. 2 - Prob. 76RECh. 2 - Prob. 77RECh. 2 - Prob. 78RECh. 2 - Evaluate limx01+tanx1+sinxx3.Ch. 2 - Prob. 80RECh. 2 - Prob. 81RECh. 2 - Prob. 82RE
Knowledge Booster
Similar questions
- (10) (16 points) Let R>0. Consider the truncated sphere S given as x² + y² + (z = √15R)² = R², z ≥0. where F(x, y, z) = −yi + xj . (a) (8 points) Consider the vector field V (x, y, z) = (▼ × F)(x, y, z) Think of S as a hot-air balloon where the vector field V is the velocity vector field measuring the hot gasses escaping through the porous surface S. The flux of V across S gives the volume flow rate of the gasses through S. Calculate this flux. Hint: Parametrize the boundary OS. Then use Stokes' Theorem. (b) (8 points) Calculate the surface area of the balloon. To calculate the surface area, do the following: Translate the balloon surface S by the vector (-15)k. The translated surface, call it S+ is part of the sphere x² + y²+z² = R². Why do S and S+ have the same area? ⚫ Calculate the area of S+. What is the natural spherical parametrization of S+?arrow_forward(1) (8 points) Let c(t) = (et, et sint, et cost). Reparametrize c as a unit speed curve starting from the point (1,0,1).arrow_forward(9) (16 points) Let F(x, y, z) = (x² + y − 4)i + 3xyj + (2x2 +z²)k = - = (x²+y4,3xy, 2x2 + 2²). (a) (4 points) Calculate the divergence and curl of F. (b) (6 points) Find the flux of V x F across the surface S given by x² + y²+2² = 16, z ≥ 0. (c) (6 points) Find the flux of F across the boundary of the unit cube E = [0,1] × [0,1] x [0,1].arrow_forward
- (8) (12 points) (a) (8 points) Let C be the circle x² + y² = 4. Let F(x, y) = (2y + e²)i + (x + sin(y²))j. Evaluate the line integral JF. F.ds. Hint: First calculate V x F. (b) (4 points) Let S be the surface r² + y² + z² = 4, z ≤0. Calculate the flux integral √(V × F) F).dS. Justify your answer.arrow_forwardDetermine whether the Law of Sines or the Law of Cosines can be used to find another measure of the triangle. a = 13, b = 15, C = 68° Law of Sines Law of Cosines Then solve the triangle. (Round your answers to four decimal places.) C = 15.7449 A = 49.9288 B = 62.0712 × Need Help? Read It Watch Itarrow_forward(4) (10 points) Evaluate √(x² + y² + z²)¹⁄² exp[}(x² + y² + z²)²] dV where D is the region defined by 1< x² + y²+ z² ≤4 and √√3(x² + y²) ≤ z. Note: exp(x² + y²+ 2²)²] means el (x²+ y²+=²)²]¸arrow_forward
- (2) (12 points) Let f(x,y) = x²e¯. (a) (4 points) Calculate Vf. (b) (4 points) Given x directional derivative 0, find the line of vectors u = D₁f(x, y) = 0. (u1, 2) such that the - (c) (4 points) Let u= (1+3√3). Show that Duƒ(1, 0) = ¦|▼ƒ(1,0)| . What is the angle between Vf(1,0) and the vector u? Explain.arrow_forwardFind the missing values by solving the parallelogram shown in the figure. (The lengths of the diagonals are given by c and d. Round your answers to two decimal places.) a b 29 39 66.50 C 17.40 d 0 54.0 126° a Ꮎ b darrow_forward(5) (10 points) Let D be the parallelogram in the xy-plane with vertices (0, 0), (1, 1), (1, 1), (0, -2). Let f(x,y) = xy/2. Use the linear change of variables T(u, v)=(u,u2v) = (x, y) 1 to calculate the integral f(x,y) dA= 0 ↓ The domain of T is a rectangle R. What is R? |ǝ(x, y) du dv. |ð(u, v)|arrow_forward
- 2 Anot ined sove in peaper PV+96252 Q3// Find the volume of the region between the cylinder z = y2 and the xy- plane that is bounded by the planes x=1, x=2,y=-2,andy=2. vertical rect a Q4// Draw and Evaluate Soxy-2sin (ny2)dydx D Lake tarrow_forwardDetermine whether the Law of Sines or the Law of Cosines can be used to find another measure of the triangle. B 13 cm 97° Law of Sines Law of Cosines A 43° Then solve the triangle. (Round your answers to two decimal places.) b = x C = A = 40.00arrow_forwardFind the missing values by solving the parallelogram shown in the figure. (The lengths of the diagonals are given by c and d. Round your answers to two decimal places.) a 29 b 39 d Ꮎ 126° a Ꮎ b darrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- Functions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning


Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage


Functions and Change: A Modeling Approach to Coll...
Algebra
ISBN:9781337111348
Author:Bruce Crauder, Benny Evans, Alan Noell
Publisher:Cengage Learning

Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning