Suppose the
Explain the consequences of a light speed of 30ms-1 on our everyday life.
Answer to Problem 1CQ
Slowing down the speed of light to 30 ms-1 makes apparent changes in length, time and color observed by an observer.
Explanation of Solution
Write the expression for length contraction,
Where,
Here,
In this case,
As
If a person moving with a velocity
Write the expression for time dilation,
Here,
Since the object is considered to be at rest in S´ frame, time observed in this frame is considered proper time.
As
Thus a person moving with a velocity
Write the expression for Doppler effect when the source is approaching
Where,
Write the expression for Doppler effect when the source is receding,
Here,
As
Want to see more full solutions like this?
Chapter 27 Solutions
College Physics (10th Edition)
Additional Science Textbook Solutions
Biology: Life on Earth (11th Edition)
Human Physiology: An Integrated Approach (8th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Human Anatomy & Physiology (2nd Edition)
Applications and Investigations in Earth Science (9th Edition)
Anatomy & Physiology (6th Edition)
- Suppose an astronaut is moving relative to the Earth at a significant fraction of the speed of light. (a) Does he observe the rate of his clocks to have slowed? (b) What change in the rate of Earth-bound clocks does he see? (c) Does his ship seem to him to shorten? (d) What about the distance between stars that lie on lines parallel to his motion? (e) Do he and an Earth-bound observer agree on his velocity relative to the Earth?arrow_forward(a) How fast would an athlete need to be running for a 100-m race to look 100 yd long? (b) Is the answer consistent with the fact that relativistic effects are difficult to observe in ordinary circumstances? Explain.arrow_forward(a) Suppose the speed of light were only 3000 m/s. A jet fighter moving toward a target on the ground at 800 m/s shoots bullets, each having a muzzle velocity of 1000 m/s. What are the bullets' velocity relative to the target? (b) If the speed of light was this small, would you observe relativistic effects in everyday life? Discuss.arrow_forward
- (a) Calculate the relativistic kinetic energy of a 1000-kg car moving at 30.0 m/s if the speed of light were only 45.0 m/s. (b) Find the ratio of the relativistic kinetic energy to classical.arrow_forward(a) All but the closest galaxies are receding from our own Milky Way Galaxy. If a galaxy 12.0109ly ly away is receding from us at 0. 0.900c, at what velocity relative to us must we send an exploratory probe to approach the other galaxy at 0.990c, as measured from that galaxy? (b) How long will it take the probe to reach the other galaxy as measured from the Earth? You may assume that the velocity of the other galaxy remains constant. (c) How long will it then take for a radio signal to be beamed back? (All of this is possible in principle, but not practical.)arrow_forwardAn alien spaceship traveling at 0.600c toward the Earth launches a landing craft. The landing craft travels in the same direction with a speed of 0.800c relative to the mother ship. As measured on the Earth, the spaceship is 0.200 ly from the Earth when the landing craft is launched. (a) What speed do the Earth-based observers measure for the approaching landing craft? (b) What is the distance to the Earth at the moment of the landing crafts launch as measured by the aliens? (c) What travel time is required for the landing craft to reach the Earth as measured by the aliens on the mother ship? (d) If the landing craft has a mass of 4.00 105 kg, what is its kinetic energy as measured in the Earth reference frame?arrow_forward
- (a) All but the closest galaxies are receding from our own Milky Way Galaxy. If a galaxy 12.0x109ly away is receding from us at 0.900c, at what velocity relative to us must we send an exploratory probe to approach the other galaxy at 0.990c as measured from that galaxy? (b) How long will it take the probe to reach the other galaxy as measured from Earth? You may assume that the velocity of the other galaxy remains constant. (c) How long will it then take for a radio signal to be beamed back? (All of this is possible in principle, but not practical.)arrow_forwardUnreasonable Results (a) Find the value of for the following situation. An astronaut measures the length of her spaceship to be 25.0 m, while an Earth-bound observer measures it to be 100 m. (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?arrow_forwardProtons in an accelerator at the Fermi National Laboratory near Chicago are accelerated to a total energy that is 400 times their rest energy. (a) What is the speed of these protons in terms of c? (b) What is their kinetic energy in MeV?arrow_forward
- Choose the option from each pair that makes the following statement correct. According to an observer at rest, moving clocks run more [(a) slowly; (b) quickly] than stationary clocks and moving rods are [ (c) longer; (d) shorter] than stationary rods.arrow_forward(a) “Newtonian mechanics correctly describes objects moving at ordinary speeds, and relativistic mechanics correctly describes objects moving very fast.” (b) “Relativistic mechanics must make a smooth transition as it reduces to Newtonian mechanics in a case in which the speed of an object becomes small compared with the speed of light.” Argue for or against statements (a) and (b).arrow_forwardUnreasonable Results A spaceship is heading directly toward Earth at a velocity of 0.800c. The astronaut on board claims that he can send a canister toward the Earth at 1.20c relative to Earth. (a) Calculate the velocity the canister must have relative to the spaceship. (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?arrow_forward
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning