Concept explainers
(a)
The degree of precision.
Answer to Problem 1A
The degree of precision is
Explanation of Solution
Given information:
The number to calculate the degree of precision is
Draw the diagram to show the degree of precision.
Figure-(I)
The degree of precision of a number depends upon the unit of measurement. Therefore, the degree of precision of number
Conclusion:
The degree of precision is
(b)
The value equal to or less than the range of the values.
Answer to Problem 1A
The value equal to or less than the range of the values is
Explanation of Solution
Write the expression for the value equal to less than the range of the values.
Here, the number is
Calculation:
Substitute
Conclusion:
The value equal to or less than the range of the values is
(c)
The value greater than the range of the values.
Answer to Problem 1A
The value greater than the range of the values is
Explanation of Solution
Write the expression for the value greater than the range of the values.
Here, the number is
Calculation:
Substitute
Conclusion:
The value greater than the range of the values is
Want to see more full solutions like this?
Chapter 27 Solutions
Mathematics for Machine Technology
- 1. Solve for x in the equation: 2. If A = (1/3 2/) 4 x³-3x²+4=0 find the determinant of A.arrow_forward3/4+1/2=arrow_forwardProve that Pleas -- Pleas A collection, Alof countinoes Sunction on a toplogical spacex separetes Point from closed setsinx (f the set S" (V) for KEA and V open set in xx from base for Top onx. @If faixe A} is collection of countinuous fancton on a top space X Wich Separates Points from closed sets then the toplogy on x is weak Top logy.arrow_forward
- @if {fx. KG A} is collection of Countin uous function on a to Polgical Which separates Points Srem closed set then the toplogy onx is the weak toplogy induced by the Map fx. Prove that using dief speParts Point 1 B closed and x&B in X then Sor some kεA fx (X) fx (B). + spacearrow_forwardWhen ever one Point sets in X are closed a collection of functions which separates Points from closed set will separates Point. 18 (prod) is product topological space then xe A (xx, Tx) is homeomorphic to sub space of the Product space (TXA, prod). KeA The Bin Projection map 18: Tx XP is continuous and open but heed hot to be closed. Acale ctioneA} of continuos function ona topogical Space X se partes Points from closed sets inx iff the set (v) for KEA and Vopen set inx from a base for top on X-arrow_forwardWhy are Bartleby experts giving only chatgpt answers?? Why are you wasting our Money and time ?arrow_forward
- 9. (a) Use pseudocode to describe an algo- rithm for determining the value of a game tree when both players follow a minmax strategy. (b) Suppose that T₁ and T2 are spanning trees of a simple graph G. Moreover, suppose that ₁ is an edge in T₁ that is not in T2. Show that there is an edge 2 in T2 that is not in T₁ such that T₁ remains a spanning tree if ₁ is removed from it and 2 is added to it, and T2 remains a spanning tree if 2 is removed from it and e₁ is added to it. (c) Show that a degree-constrained spanning tree of a simple graph in which each vertex has degree not exceeding 2 2 consists of a single Hamiltonian path in the graph.arrow_forwardChatgpt give wrong answer No chatgpt pls will upvotearrow_forwardNo chatgpt pls will upvotearrow_forward
- The roots of the equation -1÷2 and -3÷2 . Find the values a,b and carrow_forwardExercice 2: Soit & l'ensemble des nombres réels. Partie A Soit g la fonction définie et dérivable sur R telle que, pour tout réel x. g(x) = - 2x ^ 3 + x ^ 2 - 1 1. a) Étudier les variations de la fonction g b) Déterminer les limites de la fonction gen -oo et en +00. 2. Démontrer que l'équation g(x) = 0 admet une unique solution dans R, notée a, et que a appartient à | - 1 ;0|. 3. En déduire le signe de g sur R. Partie B Soit ƒ la fonction définie et dérivable sur R telle que, pour tout réel s. f(x) = (1 + x + x ^ 2 + x ^ 3) * e ^ (- 2x + 1) On note f la fonction dérivée de la fonction ƒ sur R. 1. Démontrer que lim x -> ∞ f(x) = - ∞ 2. a) Démontrer que, pour tout x > 1 1 < x < x ^ 2 < x ^ 3 b) En déduire que, pour x > 1 0 < f(x) < 4x ^ 3 * e ^ (- 2x + 1) c) On admet que, pour tout entier naturel n. lim x -> ∞ x ^ n * e ^ (- x) = 0 Vérifier que, pour tout réel x, 4x ^ 3 * e ^ (- 2x + 1) = e/2 * (2x) ^ 3 * e ^ (-2x) puis montrer que: lim x -> ∞ 4x ^ 3 * e…arrow_forwardshow me pass-to-passarrow_forward
- Mathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillElementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,
- Algebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellHolt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGAL