General Physics, 2nd Edition
2nd Edition
ISBN: 9780471522782
Author: Morton M. Sternheim
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 27, Problem 17E
To determine
Whether the hydrogen atom absorb a photon of energy greater than
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A photon corresponding to a particular frequency of blue light produces a transition from then = 2 to the n = 5 level of a hydrogen atom. Could this photon produce the same transition (n = 2to n = 5) in an atom of X? Explain.
What are the (a) energy, (b) magnitude of the momentum, and (c) wavelength of the photon emitted when a hydrogen atom
undergoes a transition from a state with n = 4 to a state with n = 2?
(a) Number
2.55
Units
eV
(b) Number
1.3617
Units
kg-m/s or N-s
(c) Number
4.865976353
Units
This answer has no units
What is the energy in eV and wavelength in µm of a photon that, when absorbed by a hydrogen atom, could cause a transition from the n = 5 to the n = 9 energy level?
(a) energy in eV
(b) wavelength in µm
Chapter 27 Solutions
General Physics, 2nd Edition
Ch. 27 - Prob. 1RQCh. 27 - Prob. 2RQCh. 27 - Prob. 3RQCh. 27 - Prob. 4RQCh. 27 - Prob. 5RQCh. 27 - Prob. 6RQCh. 27 - Prob. 7RQCh. 27 - Prob. 8RQCh. 27 - Prob. 9RQCh. 27 - Prob. 10RQ
Ch. 27 - Prob. 1ECh. 27 - Prob. 2ECh. 27 - Prob. 3ECh. 27 - Prob. 4ECh. 27 - Prob. 5ECh. 27 - Prob. 6ECh. 27 - Prob. 7ECh. 27 - Prob. 8ECh. 27 - Prob. 9ECh. 27 - Prob. 10ECh. 27 - Prob. 11ECh. 27 - Prob. 12ECh. 27 - Prob. 13ECh. 27 - Prob. 14ECh. 27 - Prob. 15ECh. 27 - Prob. 16ECh. 27 - Prob. 17ECh. 27 - Prob. 18ECh. 27 - Prob. 19ECh. 27 - Prob. 20ECh. 27 - Prob. 21ECh. 27 - Prob. 22ECh. 27 - Prob. 23ECh. 27 - Prob. 24ECh. 27 - Prob. 25ECh. 27 - Prob. 26ECh. 27 - Prob. 27ECh. 27 - Prob. 28ECh. 27 - Prob. 29ECh. 27 - Prob. 30ECh. 27 - Prob. 31ECh. 27 - Prob. 32ECh. 27 - Prob. 33ECh. 27 - Prob. 34ECh. 27 - Prob. 35ECh. 27 - Prob. 36ECh. 27 - Prob. 37ECh. 27 - Prob. 38ECh. 27 - Prob. 39ECh. 27 - Prob. 41ECh. 27 - Prob. 42ECh. 27 - Prob. 43ECh. 27 - Prob. 44ECh. 27 - Prob. 45ECh. 27 - Prob. 46ECh. 27 - Prob. 47ECh. 27 - Prob. 48E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) What is the momentum of a 0.0100-nm-wavelength photon that could detect details of an atom? (b) What is its energy in MeV?arrow_forwardWhen a hydrogen atom is in its ground state, what are the shortest and longest wavelengths of the photons it can absorb without being ionized?arrow_forwardH-alpha line is a red visible spectral line in hydrogen atom with a wavelength of 656.3 nm. Consider five distant stars labeled A, B, C, D, and E. The light from these starts was detected on Earth and, after performing spectral analysis, the following H-alpha wavelengths were measured: A = 665.5 nm, AB = 643.7 nm, Ac = 653.9 nm, Ap = 663 nm, and AE = 661.2 nm. Which star has the slowest speed relative to Earth, in which direction and how fast does it move? ✓ Earth. The slowest star is CV and it moves towards The speed of the slowest star (in km/s), Vslowest Which star has the fastest speed relative to Earth, in which direction and how fast does it move? The fastest star is B ✓ and it moves towards = -1.095E12 X Units km/s The speed of the fastest star (in km/s), Vfastest = -5.73E6 Earth. x Units km/sarrow_forward
- a) What is the momentum of a 0.0055 -nm wavelength photon that could detect details of an atom? 0.120 x10 -23 kg · m/sarrow_forwardQ) A hydrogen atom emits radiation as a result of an electron transition to a lower energy level. Determine the highest frequency possible due to this transition if the atom emits a series of lines that lie in the visible part of the spectrum. Then, if the electron ends up in n = 1 level, prove that the atom emits a series of lines of wavelength that are not in the visible part of the spectrum.arrow_forwardChapter 39, Problem 052 A hydrogen atom is excited from its ground state to the state with n = 4. (a) How much energy must be absorbed by the atom? Consider the photon energies that can be emitted by the atom as it de-excites to the ground state in the several possible ways. (b) How many different energies are possible; what are the (c) highest, (d) second highest, (e) third highest, (f) lowest, (g) second lowest, and (h) third lowest energies? (a) Number Units (b) Number Units (c) Number Units (d) Number Units (e) Number Units (f) Number Units (g) Number Units (h) Number Unitsarrow_forward
- A hypothetical atom has only two atomic energy levels, separated by 3.2 eV. Suppose that at a certain altitude in the atmosphere of a star there are 6.1 * 1013/cm3 of these atoms in the higher-energy state and 2.5 * 1015/cm3 in the lower-energy state. What is the temperature of the star’s atmosphere at that altitude?arrow_forwardA hydrogen atom in its ground state absorbs a photon of wavelength 102.5 nm. What is the principal quantum number (n) of the electron after absorbing the photon?arrow_forwardWhat is the final energy state of an H atom that transitions from the n=4 state and emits a photon with λ = 1.875 μm? n = 2 n = 1 n = 3arrow_forward
- H-alpha line is a red visible spectral line in hydrogen atom with a wavelength of 656.3 nm. Consider five distant stars labeled A, B, C, D, and E. The light from these starts was detected on Earth and, after performing spectral analysis, the following H-alpha wavelengths were measured: AA = 667.5 nm, Ag = 650.4 nm, Ac = 653.5 nm, Ap = 660.3 nm, and AE = 664.9 nm. Which star has the slowest speed relative to Earth, in which direction and how fast does it move? The slowest star is? and it moves Select an answer The speed of the slowest star (in km/s), Vslowest = Which star has the fastest speed relative to Earth, in which direction and how fast does it move? The fastest star is? and it moves Select an answer Earth. The speed of the fastest star (in km/s), Vfastest Submit Question = Earth. Units Select an answer ✓ Units Select an answer ✓arrow_forwardSuppose that a hydrogen atom in the ground state absorbs a photon of wavelength 10.3 nm. If the atom is ionized, what will be the ki- netic energy of the electron when it gets far away from its atom of origin? The value of ħ is 1.05457 × 10¬3ª J.s; the speed of light is 2.99799 × 10° m/s; the value of h is 6.62607 × 10¬34 J.s; the Rydberg con- stant for hydrogen is 1.09735 × 10´ m¬'; the Bohr radius is 5.29177 × 10-11 m; and the ground state energy for hydrogen 13.6057 eV. 1 eV = 1.60218 × 10¬19 J. Answer in units of eV. -34arrow_forwardA hydrogen atom in an n=2, I=1, m1 = -1 state emits a photon when it decays to an n=1 I=0, mI=0 ground state. If the atom is in a magnetic field in the + z direction and with a magnitude of 2.50 T, what is the shift in the wavelength of the photon from zero-field value?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning