EBK COLLEGE PHYSICS
EBK COLLEGE PHYSICS
10th Edition
ISBN: 8220100853050
Author: Vuille
Publisher: CENGAGE L
bartleby

Concept explainers

Question
Book Icon
Chapter 27, Problem 11P

(a)

To determine

The work function in Joules.

(a)

Expert Solution
Check Mark

Answer to Problem 11P

The work function in Joules is 1.02×1018J .

Explanation of Solution

The work function in joules is,

ϕJ=ϕeV(1.60×1019J1eV)

    • ϕJ is the work function in joules
    • ϕeV is the work function in electron volt

Substitute 6.35eV for ϕeV .

ϕJ=(6.35eV)(1.60×1019J1eV)=1.02×1018J

Conclusion:

Thus, the work function in Joules is 1.02×1018J .

(b)

To determine

The cutoff frequency for platinum.

(b)

Expert Solution
Check Mark

Answer to Problem 11P

The cutoff frequency for platinum is 1.53×1015Hz .

Explanation of Solution

The energy of the photon is,

Ephoton=hfc

    • h is the Plank’s constant
    • fc is the cutoff frequency

The cutoff frequency is,

fc=ϕh

Substitute 6.35eV for ϕ and 6.63×1034J.s for h .

fc=6.35eV6.63×1034J.s(1eV1.60×1019J)=1.53×1015Hz

Conclusion:

Thus, the cutoff frequency for platinum is 1.53×1015Hz .

(c)

To determine

The maximum wavelength of the light incident on the platinum surface.

(c)

Expert Solution
Check Mark

Answer to Problem 11P

The maximum wavelength of the light incident on the platinum surface is 196nm .

Explanation of Solution

The equation for cutoff wavelength is,

λc=hcϕ=cfc

Substitute 3.00×108m/s for c and 1.53×1015Hz for fc .

λc=3.00×108m/s1.53×1015Hz=1.96×107m=196nm

Conclusion:

Thus, the maximum wavelength of the light incident on the platinum surface is 196nm .

(d)

To determine

The maximum kinetic energy of the ejected photoelectrons.

(d)

Expert Solution
Check Mark

Answer to Problem 11P

The maximum kinetic energy of the ejected photoelectrons is 2.15eV .

Explanation of Solution

The equation for maximum kinetic energy is,

KEmax=Ephotonϕ

    • Ephoton is the energy of the photon

Substitute 8.50eV for Ephoton and 6.35eV for ϕ .

KEmax=8.50eV6.35eV=2.15eV

Conclusion:

Thus, the maximum kinetic energy of the ejected photoelectrons is 2.15eV .

(e)

To determine

The stopping potential required to arrest the current of photoelectrons.

(e)

Expert Solution
Check Mark

Answer to Problem 11P

The stopping potential required to arrest the current of photoelectrons is 2.15V .

Explanation of Solution

We have the relation,

eVs=KEmaxVs=KEmaxe

Substitute 2.15eV for KEmax and 1.60×1019C .

Vs=2.15eV1.60×1019C=2.15V

Conclusion:

Thus, the maximum kinetic energy of the ejected photoelectrons is 2.15eV

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
ROTATIONAL DYNAMICS Question 01 A solid circular cylinder and a solid spherical ball of the same mass and radius are rolling together down the same inclined. Calculate the ratio of their kinetic energy. Assume pure rolling motion Question 02 A sphere and cylinder of the same mass and radius start from ret at the same point and more down the same plane inclined at 30° to the horizontal Which body gets the bottom first and what is its acceleration b) What angle of inclination of the plane is needed to give the slower body the same acceleration Question 03 i) Define the angular velocity of a rotating body and give its SI unit A car wheel has its angular velocity changing from 2rads to 30 rads seconds. If the radius of the wheel is 400mm. calculate ii) The angular acceleration iii) The tangential linear acceleration of a point on the rim of the wheel Question 04 in 20
Question B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…
SECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning