
Concept explainers
(a)
The radius of the first Bohr orbit of the hydrogen atom considering that the electron is bound to the proton by gravitational force (rather than electrostatic force)

Answer to Problem 94QAP
The radius of the first Bohr orbit of the hydrogen atom is given by the following expression
Explanation of Solution
Given:
It is assumed that the electron is bound to the proton by gravitational force (rather than electrostatic force) in hydrogen atom.
Formula used:
In this case the
where me and mp are electron and proton mass respectively, G is the gravitational constant.
According to Bohr quantization principle
So mathematically we can write it as
where, me is the mass of the electron, v and r are the velocity of the electron and radius of the electron orbit respectively, n is a positive integer.
Calculation:
From Eq. (1.1) we can write
Putting n =1 for the 1st Bohr orbit in Eq. (1.2) we get
Using the expression for v in Eq. (1.3) we get
Conclusion:
Therefore, the radius of the first Bohr orbit of the hydrogen atom is given by the following expression
(b)
The energy of the electron in the first Bohr orbit

Answer to Problem 94QAP
The energy expression for the electron in the 1st Bohr orbit is given by
Explanation of Solution
Given:
It is assumed that the electron is bound to the proton by gravitational force (rather than electrostatic force) in hydrogen atom.
Calculation:
Now substituting the expression for the radius of the 1st Bohr orbit r given by Eq. 1.5 in Eq. 1.4 we get the expression for the velocity of the electron as
So the kinetic energy of the electron is
The gravitational potential energy of the electron is given by
Now substituting the expression for r from Eq. 1.5 in Eq. 1.8 we get
Therefore the total energy of the electron in the 1st Bohr orbit is given by
Now using the expressions for Ek (Eq. 1.7) and Ep (Eq. 1.9) we get the total energy as
Conclusion:
Therefore, the energy expression for the electron in the 1st Bohr orbit is given by
Want to see more full solutions like this?
Chapter 26 Solutions
FlipIt for College Physics (Algebra Version - Six Months Access)
- please answer this asap!!!!arrow_forwardRT = 4.7E-30 18V IT = 2.3E-3A+ 12 38Ω ли 56Ω ли r5 27Ω ли r3 28Ω r4 > 75Ω r6 600 0.343V 75.8A Now figure out how much current in going through the r4 resistor. |4 = unit And then use that current to find the voltage drop across the r resistor. V4 = unitarrow_forward7 Find the volume inside the cone z² = x²+y², above the (x, y) plane, and between the spheres x²+y²+z² = 1 and x² + y²+z² = 4. Hint: use spherical polar coordinates.arrow_forward
- ганм Two long, straight wires are oriented perpendicular to the page, as shown in the figure(Figure 1). The current in one wire is I₁ = 3.0 A, pointing into the page, and the current in the other wire is 12 4.0 A, pointing out of the page. = Find the magnitude and direction of the net magnetic field at point P. Express your answer using two significant figures. VO ΜΕ ΑΣΦ ? Figure P 5.0 cm 5.0 cm ₁ = 3.0 A 12 = 4.0 A B: μΤ You have already submitted this answer. Enter a new answer. No credit lost. Try again. Submit Previous Answers Request Answer 1 of 1 Part B X Express your answer using two significant figures. ΜΕ ΑΣΦ 0 = 0 ? below the dashed line to the right P You have already submitted this answer. Enter a new answer. No credit lost. Try again.arrow_forwardAn infinitely long conducting cylindrical rod with a positive charge λ per unit length is surrounded by a conducting cylindrical shell (which is also infinitely long) with a charge per unit length of −2λ and radius r1, as shown in the figure. What is σinner, the surface charge density (charge per unit area) on the inner surface of the conducting shell? What is σouter, the surface charge density on the outside of the conducting shell? (Recall from the problem statement that the conducting shell has a total charge per unit length given by −2λ.)arrow_forwardA small conducting spherical shell with inner radius aa and outer radius b is concentric with a larger conducting spherical shell with inner radius c and outer radius d (Figure 1). The inner shell has total charge +2q, and the outer shell has charge −2q. What's the total charge on the inner surface of the small shell? What's the total charge on the outer surface of the small shell? What's the total charge on the inner surface of the large shell? What's the total charge on the outer surface of the large shell?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





