![PHYSICS:F/SCI.+ENGRS.,V.1](https://compass-isbn-assets.s3.amazonaws.com/isbn_cover_images/9781337553575/9781337553575_largeCoverImage.gif)
(a)
A spreadsheet for I
and R = Δ V I
for Δ V = 0.400 V to 0 .600 V
in increments of 0 .005 V
for T = 280 K, 300 K, and 320 K
.
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 46AP
(Volts) |
(Amperes) |
|
0.4 | 0.015932 | 25.1067 |
0.405 | 0.019602 | 20.66116 |
0.41 | 0.024117 | 17.00046 |
0.415 | 0.029673 | 13.98578 |
0.42 | 0.036508 | 11.50433 |
0.425 | 0.044918 | 9.461686 |
0.43 | 0.055264 | 7.780834 |
0.435 | 0.067995 | 6.397529 |
0.44 | 0.083657 | 5.259572 |
0.445 | 0.102927 | 4.323453 |
0.45 | 0.126637 | 3.553464 |
0.455 | 0.155807 | 2.92028 |
0.46 | 0.191697 | 2.39962 |
0.465 | 0.235855 | 1.97155 |
0.47 | 0.290184 | 1.619662 |
0.475 | 0.357027 | 1.330432 |
0.48 | 0.439268 | 1.092727 |
0.485 | 0.540454 | 0.897394 |
0.495 | 0.818117 | 0.605048 |
0.5 | 1.006569 | 0.496737 |
0.505 | 1.238432 | 0.407774 |
0.51 | 1.523704 | 0.334711 |
0.515 | 1.874688 | 0.274712 |
0.52 | 2.306521 | 0.225448 |
0.525 | 2.837827 | 0.185001 |
0.53 | 3.491518 | 0.151796 |
0.535 | 4.295787 | 0.124541 |
0.54 | 5.285319 | 0.10217 |
0.545 | 6.502788 | 0.08381 |
0.55 | 8.000701 | 0.068744 |
0.555 | 9.843657 | 0.056381 |
0.56 | 12.11114 | 0.046238 |
0.565 | 14.90093 | 0.037917 |
0.57 | 18.33335 | 0.031091 |
0.575 | 22.55642 | 0.025492 |
0.58 | 27.75228 | 0.020899 |
0.585 | 34.145 | 0.017133 |
0.59 | 42.01028 | 0.014044 |
0.595 | 51.68732 | 0.011512 |
0.6 | 63.59346 | 0.009435 |
A spreadsheet for
(Volts) |
(Amperes) |
|
0.4 | 0.005274 | 75.84672 |
0.405 | 0.0064 | 63.28565 |
0.41 | 0.007766 | 52.79679 |
0.415 | 0.009423 | 44.03979 |
0.42 | 0.011435 | 36.72991 |
0.425 | 0.013876 | 30.62901 |
0.43 | 0.016838 | 25.53795 |
0.435 | 0.020432 | 21.29022 |
0.44 | 0.024793 | 17.74668 |
0.445 | 0.030086 | 14.79101 |
0.45 | 0.036508 | 12.32605 |
0.455 | 0.044301 | 10.27061 |
0.46 | 0.053758 | 8.556892 |
0.465 | 0.065233 | 7.128278 |
0.47 | 0.079158 | 5.937492 |
0.475 | 0.096055 | 4.945067 |
0.48 | 0.11656 | 4.118066 |
0.485 | 0.141441 | 3.428998 |
0.495 | 0.20827 | 2.376718 |
0.5 | 0.252728 | 1.978408 |
0.505 | 0.306677 | 1.646686 |
0.51 | 0.372141 | 1.370449 |
0.515 | 0.451579 | 1.140443 |
0.52 | 0.547974 | 0.948949 |
0.525 | 0.664947 | 0.789537 |
0.53 | 0.806888 | 0.656844 |
0.535 | 0.979129 | 0.546404 |
0.54 | 1.188137 | 0.454493 |
0.545 | 1.44176 | 0.37801 |
0.55 | 1.749522 | 0.314372 |
0.555 | 2.122981 | 0.261425 |
0.56 | 2.576159 | 0.217378 |
0.565 | 3.126073 | 0.180738 |
0.57 | 3.793374 | 0.150262 |
0.575 | 4.603119 | 0.124915 |
0.58 | 5.585715 | 0.103836 |
0.585 | 6.778058 | 0.086308 |
0.59 | 8.224923 | 0.071733 |
0.595 | 9.98064 | 0.059615 |
0.6 | 12.11114 | 0.049541 |
A spreadsheet for
(Volts) |
(Amperes) |
|
0.4 | 0.002004 | 199.5582 |
0.405 | 0.002403 | 168.5349 |
0.41 | 0.002881 | 142.3127 |
0.415 | 0.003454 | 120.1526 |
0.42 | 0.004141 | 101.4283 |
0.425 | 0.004964 | 85.60991 |
0.43 | 0.005952 | 72.24847 |
0.435 | 0.007135 | 60.96416 |
0.44 | 0.008554 | 51.43551 |
0.445 | 0.010256 | 43.39059 |
0.45 | 0.012295 | 36.59933 |
0.455 | 0.014741 | 30.86719 |
0.46 | 0.017672 | 26.02967 |
0.465 | 0.021187 | 21.9477 |
0.47 | 0.0254 | 18.50372 |
0.475 | 0.030452 | 15.59839 |
0.48 | 0.036508 | 13.14778 |
0.485 | 0.043769 | 11.08098 |
0.495 | 0.062909 | 7.868498 |
0.5 | 0.07542 | 6.629515 |
0.505 | 0.09042 | 5.585066 |
0.51 | 0.108402 | 4.704703 |
0.515 | 0.129961 | 3.962729 |
0.52 | 0.155807 | 3.337456 |
0.525 | 0.186794 | 2.810585 |
0.53 | 0.223943 | 2.366674 |
0.535 | 0.26848 | 1.992698 |
0.54 | 0.321875 | 1.67767 |
0.545 | 0.385889 | 1.412324 |
0.55 | 0.462633 | 1.188846 |
0.555 | 0.554641 | 1.000647 |
0.56 | 0.664947 | 0.842173 |
0.565 | 0.79719 | 0.70874 |
0.57 | 0.955733 | 0.596401 |
0.575 | 1.145807 | 0.50183 |
0.58 | 1.373682 | 0.422223 |
0.585 | 1.646877 | 0.355218 |
0.59 | 1.974404 | 0.298824 |
0.595 | 2.367069 | 0.251366 |
0.6 | 2.837827 | 0.211429 |
Explanation of Solution
Given information: Th first symbol i.e. Euler’s number is
It is given that the expression for the current-voltage characteristic curve for a semiconductor diode as a function of temperature
Here,
Formula to calculate the resistance across the diode is,
Here,
The value of magnitude of electron charge is
The value of Boltzmann’s constant is
The value of voltage across the diode varies from
From equation (1), formula to calculate the current across a semiconductor diode temperature
Here,
Substitute
Thus, the current across a semiconductor diode temperature
From equation (2), formula to calculate the resistance across the diode is,
Here,
Substitute
Thus, the resistance across the diode is
As the value of voltage across the diode varies from
Thus, a spreadsheet for
(Volts) |
(Amperes) |
|
0.4 | 0.015932 | 25.1067 |
0.405 | 0.019602 | 20.66116 |
0.41 | 0.024117 | 17.00046 |
0.415 | 0.029673 | 13.98578 |
0.42 | 0.036508 | 11.50433 |
0.425 | 0.044918 | 9.461686 |
0.43 | 0.055264 | 7.780834 |
0.435 | 0.067995 | 6.397529 |
0.44 | 0.083657 | 5.259572 |
0.445 | 0.102927 | 4.323453 |
0.45 | 0.126637 | 3.553464 |
0.455 | 0.155807 | 2.92028 |
0.46 | 0.191697 | 2.39962 |
0.465 | 0.235855 | 1.97155 |
0.47 | 0.290184 | 1.619662 |
0.475 | 0.357027 | 1.330432 |
0.48 | 0.439268 | 1.092727 |
0.485 | 0.540454 | 0.897394 |
0.495 | 0.818117 | 0.605048 |
0.5 | 1.006569 | 0.496737 |
0.505 | 1.238432 | 0.407774 |
0.51 | 1.523704 | 0.334711 |
0.515 | 1.874688 | 0.274712 |
0.52 | 2.306521 | 0.225448 |
0.525 | 2.837827 | 0.185001 |
0.53 | 3.491518 | 0.151796 |
0.535 | 4.295787 | 0.124541 |
0.54 | 5.285319 | 0.10217 |
0.545 | 6.502788 | 0.08381 |
0.55 | 8.000701 | 0.068744 |
0.555 | 9.843657 | 0.056381 |
0.56 | 12.11114 | 0.046238 |
0.565 | 14.90093 | 0.037917 |
0.57 | 18.33335 | 0.031091 |
0.575 | 22.55642 | 0.025492 |
0.58 | 27.75228 | 0.020899 |
0.585 | 34.145 | 0.017133 |
0.59 | 42.01028 | 0.014044 |
0.595 | 51.68732 | 0.011512 |
0.6 | 63.59346 | 0.009435 |
From equation (1), formula to calculate the current across a semiconductor diode temperature
Here,
Substitute
Thus, the current across a semiconductor diode temperature
From equation (2), formula to calculate the resistance across the diode is,
Here,
Substitute
Thus, the resistance across the diode is
As the value of voltage across the diode varies from
Thus, a spreadsheet for
(Volts) |
(Amperes) |
|
0.4 | 0.005274 | 75.84672 |
0.405 | 0.0064 | 63.28565 |
0.41 | 0.007766 | 52.79679 |
0.415 | 0.009423 | 44.03979 |
0.42 | 0.011435 | 36.72991 |
0.425 | 0.013876 | 30.62901 |
0.43 | 0.016838 | 25.53795 |
0.435 | 0.020432 | 21.29022 |
0.44 | 0.024793 | 17.74668 |
0.445 | 0.030086 | 14.79101 |
0.45 | 0.036508 | 12.32605 |
0.455 | 0.044301 | 10.27061 |
0.46 | 0.053758 | 8.556892 |
0.465 | 0.065233 | 7.128278 |
0.47 | 0.079158 | 5.937492 |
0.475 | 0.096055 | 4.945067 |
0.48 | 0.11656 | 4.118066 |
0.485 | 0.141441 | 3.428998 |
0.495 | 0.20827 | 2.376718 |
0.5 | 0.252728 | 1.978408 |
0.505 | 0.306677 | 1.646686 |
0.51 | 0.372141 | 1.370449 |
0.515 | 0.451579 | 1.140443 |
0.52 | 0.547974 | 0.948949 |
0.525 | 0.664947 | 0.789537 |
0.53 | 0.806888 | 0.656844 |
0.535 | 0.979129 | 0.546404 |
0.54 | 1.188137 | 0.454493 |
0.545 | 1.44176 | 0.37801 |
0.55 | 1.749522 | 0.314372 |
0.555 | 2.122981 | 0.261425 |
0.56 | 2.576159 | 0.217378 |
0.565 | 3.126073 | 0.180738 |
0.57 | 3.793374 | 0.150262 |
0.575 | 4.603119 | 0.124915 |
0.58 | 5.585715 | 0.103836 |
0.585 | 6.778058 | 0.086308 |
0.59 | 8.224923 | 0.071733 |
0.595 | 9.98064 | 0.059615 |
0.6 | 12.11114 | 0.049541 |
From equation (1), formula to calculate the current across a semiconductor diode temperature
Here,
Substitute
Thus, the current across a semiconductor diode temperature
From equation (2), formula to calculate the resistance across the diode is,
Here,
Substitute
Thus, the resistance across the diode is
As the value of voltage across the diode varies from
Thus, a spreadsheet for
(Volts) |
(Amperes) |
|
0.4 | 0.002004 | 199.5582 |
0.405 | 0.002403 | 168.5349 |
0.41 | 0.002881 | 142.3127 |
0.415 | 0.003454 | 120.1526 |
0.42 | 0.004141 | 101.4283 |
0.425 | 0.004964 | 85.60991 |
0.43 | 0.005952 | 72.24847 |
0.435 | 0.007135 | 60.96416 |
0.44 | 0.008554 | 51.43551 |
0.445 | 0.010256 | 43.39059 |
0.45 | 0.012295 | 36.59933 |
0.455 | 0.014741 | 30.86719 |
0.46 | 0.017672 | 26.02967 |
0.465 | 0.021187 | 21.9477 |
0.47 | 0.0254 | 18.50372 |
0.475 | 0.030452 | 15.59839 |
0.48 | 0.036508 | 13.14778 |
0.485 | 0.043769 | 11.08098 |
0.495 | 0.062909 | 7.868498 |
0.5 | 0.07542 | 6.629515 |
0.505 | 0.09042 | 5.585066 |
0.51 | 0.108402 | 4.704703 |
0.515 | 0.129961 | 3.962729 |
0.52 | 0.155807 | 3.337456 |
0.525 | 0.186794 | 2.810585 |
0.53 | 0.223943 | 2.366674 |
0.535 | 0.26848 | 1.992698 |
0.54 | 0.321875 | 1.67767 |
0.545 | 0.385889 | 1.412324 |
0.55 | 0.462633 | 1.188846 |
0.555 | 0.554641 | 1.000647 |
0.56 | 0.664947 | 0.842173 |
0.565 | 0.79719 | 0.70874 |
0.57 | 0.955733 | 0.596401 |
0.575 | 1.145807 | 0.50183 |
0.58 | 1.373682 | 0.422223 |
0.585 | 1.646877 | 0.355218 |
0.59 | 1.974404 | 0.298824 |
0.595 | 2.367069 | 0.251366 |
0.6 | 2.837827 | 0.211429 |
Conclusion:
Therefore, a spreadsheet for
(Volts) |
(Amperes) |
|
0.4 | 0.015932 | 25.1067 |
0.405 | 0.019602 | 20.66116 |
0.41 | 0.024117 | 17.00046 |
0.415 | 0.029673 | 13.98578 |
0.42 | 0.036508 | 11.50433 |
0.425 | 0.044918 | 9.461686 |
0.43 | 0.055264 | 7.780834 |
0.435 | 0.067995 | 6.397529 |
0.44 | 0.083657 | 5.259572 |
0.445 | 0.102927 | 4.323453 |
0.45 | 0.126637 | 3.553464 |
0.455 | 0.155807 | 2.92028 |
0.46 | 0.191697 | 2.39962 |
0.465 | 0.235855 | 1.97155 |
0.47 | 0.290184 | 1.619662 |
0.475 | 0.357027 | 1.330432 |
0.48 | 0.439268 | 1.092727 |
0.485 | 0.540454 | 0.897394 |
0.495 | 0.818117 | 0.605048 |
0.5 | 1.006569 | 0.496737 |
0.505 | 1.238432 | 0.407774 |
0.51 | 1.523704 | 0.334711 |
0.515 | 1.874688 | 0.274712 |
0.52 | 2.306521 | 0.225448 |
0.525 | 2.837827 | 0.185001 |
0.53 | 3.491518 | 0.151796 |
0.535 | 4.295787 | 0.124541 |
0.54 | 5.285319 | 0.10217 |
0.545 | 6.502788 | 0.08381 |
0.55 | 8.000701 | 0.068744 |
0.555 | 9.843657 | 0.056381 |
0.56 | 12.11114 | 0.046238 |
0.565 | 14.90093 | 0.037917 |
0.57 | 18.33335 | 0.031091 |
0.575 | 22.55642 | 0.025492 |
0.58 | 27.75228 | 0.020899 |
0.585 | 34.145 | 0.017133 |
0.59 | 42.01028 | 0.014044 |
0.595 | 51.68732 | 0.011512 |
0.6 | 63.59346 | 0.009435 |
A spreadsheet for
(Volts) |
(Amperes) |
|
0.4 | 0.005274 | 75.84672 |
0.405 | 0.0064 | 63.28565 |
0.41 | 0.007766 | 52.79679 |
0.415 | 0.009423 | 44.03979 |
0.42 | 0.011435 | 36.72991 |
0.425 | 0.013876 | 30.62901 |
0.43 | 0.016838 | 25.53795 |
0.435 | 0.020432 | 21.29022 |
0.44 | 0.024793 | 17.74668 |
0.445 | 0.030086 | 14.79101 |
0.45 | 0.036508 | 12.32605 |
0.455 | 0.044301 | 10.27061 |
0.46 | 0.053758 | 8.556892 |
0.465 | 0.065233 | 7.128278 |
0.47 | 0.079158 | 5.937492 |
0.475 | 0.096055 | 4.945067 |
0.48 | 0.11656 | 4.118066 |
0.485 | 0.141441 | 3.428998 |
0.495 | 0.20827 | 2.376718 |
0.5 | 0.252728 | 1.978408 |
0.505 | 0.306677 | 1.646686 |
0.51 | 0.372141 | 1.370449 |
0.515 | 0.451579 | 1.140443 |
0.52 | 0.547974 | 0.948949 |
0.525 | 0.664947 | 0.789537 |
0.53 | 0.806888 | 0.656844 |
0.535 | 0.979129 | 0.546404 |
0.54 | 1.188137 | 0.454493 |
0.545 | 1.44176 | 0.37801 |
0.55 | 1.749522 | 0.314372 |
0.555 | 2.122981 | 0.261425 |
0.56 | 2.576159 | 0.217378 |
0.565 | 3.126073 | 0.180738 |
0.57 | 3.793374 | 0.150262 |
0.575 | 4.603119 | 0.124915 |
0.58 | 5.585715 | 0.103836 |
0.585 | 6.778058 | 0.086308 |
0.59 | 8.224923 | 0.071733 |
0.595 | 9.98064 | 0.059615 |
0.6 | 12.11114 | 0.049541 |
A spreadsheet for
(Volts) |
(Amperes) |
|
0.4 | 0.002004 | 199.5582 |
0.405 | 0.002403 | 168.5349 |
0.41 | 0.002881 | 142.3127 |
0.415 | 0.003454 | 120.1526 |
0.42 | 0.004141 | 101.4283 |
0.425 | 0.004964 | 85.60991 |
0.43 | 0.005952 | 72.24847 |
0.435 | 0.007135 | 60.96416 |
0.44 | 0.008554 | 51.43551 |
0.445 | 0.010256 | 43.39059 |
0.45 | 0.012295 | 36.59933 |
0.455 | 0.014741 | 30.86719 |
0.46 | 0.017672 | 26.02967 |
0.465 | 0.021187 | 21.9477 |
0.47 | 0.0254 | 18.50372 |
0.475 | 0.030452 | 15.59839 |
0.48 | 0.036508 | 13.14778 |
0.485 | 0.043769 | 11.08098 |
0.495 | 0.062909 | 7.868498 |
0.5 | 0.07542 | 6.629515 |
0.505 | 0.09042 | 5.585066 |
0.51 | 0.108402 | 4.704703 |
0.515 | 0.129961 | 3.962729 |
0.52 | 0.155807 | 3.337456 |
0.525 | 0.186794 | 2.810585 |
0.53 | 0.223943 | 2.366674 |
0.535 | 0.26848 | 1.992698 |
0.54 | 0.321875 | 1.67767 |
0.545 | 0.385889 | 1.412324 |
0.55 | 0.462633 | 1.188846 |
0.555 | 0.554641 | 1.000647 |
0.56 | 0.664947 | 0.842173 |
0.565 | 0.79719 | 0.70874 |
0.57 | 0.955733 | 0.596401 |
0.575 | 1.145807 | 0.50183 |
0.58 | 1.373682 | 0.422223 |
0.585 | 1.646877 | 0.355218 |
0.59 | 1.974404 | 0.298824 |
0.595 | 2.367069 | 0.251366 |
0.6 | 2.837827 | 0.211429 |
(b)
To draw: The graph for
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 46AP
The graph for
The graph for
Explanation of Solution
Given information: The first symbol i.e. Euler’s number is
The different values of the
Thus, the graph for
The different values of the
Thus, the graph for
The different values of the
The graph for
Conclusion:
Therefore, the graph for
Therefore, the graph for
Therefore, the graph for
Want to see more full solutions like this?
Chapter 26 Solutions
PHYSICS:F/SCI.+ENGRS.,V.1
- No chatgpt plsarrow_forwardhelp me with the experimental set up for the excel i did. the grapharrow_forwardWhich of the following best describes how to calculate the average acceleration of any object? Average acceleration is always halfway between the initial acceleration of an object and its final acceleration. Average acceleration is always equal to the change in velocity of an object divided by the time interval. Average acceleration is always equal to the displacement of an object divided by the time interval. Average acceleration is always equal to the change in speed of an object divided by the time interval.arrow_forward
- The figure shows the velocity versus time graph for a car driving on a straight road. Which of the following best describes the acceleration of the car? v (m/s) t(s) The acceleration of the car is negative and decreasing. The acceleration of the car is constant. The acceleration of the car is positive and increasing. The acceleration of the car is positive and decreasing. The acceleration of the car is negative and increasing.arrow_forwardWhich figure could represent the velocity versus time graph of a motorcycle whose speed is increasing? v (m/s) v (m/s) t(s) t(s)arrow_forwardUnlike speed, velocity is a the statement? Poisition. Direction. Vector. Scalar. quantity. Which one of the following completesarrow_forward
- No chatgpt pls will upvote Already got wrong chatgpt answerarrow_forward3.63 • Leaping the River II. A physics professor did daredevil stunts in his spare time. His last stunt was an attempt to jump across a river on a motorcycle (Fig. P3.63). The takeoff ramp was inclined at 53.0°, the river was 40.0 m wide, and the far bank was 15.0 m lower than the top of the ramp. The river itself was 100 m below the ramp. Ignore air resistance. (a) What should his speed have been at the top of the ramp to have just made it to the edge of the far bank? (b) If his speed was only half the value found in part (a), where did he land? Figure P3.63 53.0° 100 m 40.0 m→ 15.0 marrow_forwardPlease solve and answer the question correctly please. Thank you!!arrow_forward
- You throw a small rock straight up from the edge of a highway bridge that crosses a river. The rock passes you on its way down, 5.00 s after it was thrown. What is the speed of the rock just before it reaches the water 25.0 m below the point where the rock left your hand? Ignore air resistance.arrow_forwardHelp me make a visualize experimental setup using a word document. For the theory below.arrow_forwardHow to solve this, given answerarrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553292/9781337553292_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168161/9781938168161_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168185/9781938168185_smallCoverImage.gif)