Concept explainers
(a)
The equivalent capacitance of the system.
(a)
Answer to Problem 34P
The equivalent capacitance of the system is
Explanation of Solution
Given information: The value of capacitor 1 is
The capacitors
Formula to calculate the equivalent capacitance of the system when they are connected in series.
Here,
Substitute
Thus, the equivalent capacitance of the system is
Conclusion:
Therefore, the equivalent capacitance of the system is
(b)
The energy stored in this equivalent capacitance.
(b)
Answer to Problem 34P
The energy stored in this equivalent capacitance is
Explanation of Solution
Given information: The value of capacitor 1 is
Formula to calculate the energy stored in this equivalent capacitance.
Here,
Substitute
Thus, the energy stored in this equivalent capacitance is
Conclusion:
Therefore, the energy stored in this equivalent capacitance is
(c)
The energy stored in each individual capacitor.
(c)
Answer to Problem 34P
The energy stored in the capacitor 1 is
Explanation of Solution
Given information: The value of capacitor 1 is
In series connection, the charge will be same in capactor 1 and capacitor 2,
It is given that the total voltage of the battery is
Write the expression to calculate the voltage across capacitor 1.
Substitute
Substitute
Thus, the voltage across capacitor 2 is
Substitute
Thus, the voltage across capacitor 1 is
Formula to calculate the energy stored in the capacitor 1.
Here,
Substitute
Thus, the energy stored in the capacitor 1 is
Formula to calculate the energy stored in the capacitor 2.
Here,
Substitute
Thus, the energy stored in the capacitor 2 is
Conclusion:
Therefore, the energy stored in the capacitor 1 is
(d)
To show: The sum of these two energies is the same as the energy found in part (b).
(d)
Answer to Problem 34P
The sum of these two energies is the same as the energy found in part (b) is
Explanation of Solution
Given information: The value of capacitor 1 is
The energy stored in this equivalent capacitance is
The energy stored in the capacitor 1 is
The energy stored in the capacitor 2 is
Formula to calculate the sum of these two energies.
Here,
Substitute
Thus, the sum of these two energies is the same as the energy found in part (b).
Conclusion:
Therefore, the sum of these two energies is the same as the energy found in part (b) is
(e)
The reason that this equality will always be true, or the reason that it depends on the number of capacitors and their capacitances.
(e)
Answer to Problem 34P
This equality will always be true because the energy stored in series and parallel for the capacitors is same.
Explanation of Solution
Given information: The value of capacitor 1 is
Formula to calculate the energy stored by the capacitor in series.
Here,
Formula to calculate the energy stored by the capacitor in parallel.
Here,
The value of the energy stored by the capacitor in series and the energy stored by the capacitor in parallel are equal so, this equality will always be true.
Thus, this equality will always be true because the energy stored in series and parallel for the capacitors is same.
Conclusion:
Therefore, this equality will always be true because the energy stored in series and parallel for the capacitors is same.
(f)
The required potential difference across them so that the combination stores the same energy as in part (b).
(f)
Answer to Problem 34P
The required potential difference across them so that the combination stores the same energy as in part (b) is
Explanation of Solution
Given information: The value of capacitor 1 is
If the same capacitors are connected in parallel.
Formula to calculate the equivalent capacitance of the system when they are connected in parallel.
Here,
The energy stored in this equivalent capacitance is
Formula to calculate the required potential difference across them so that the combination stores the same energy as in part (b).
Substitute
Substitute
Thus, the required potential difference across them so that the combination stores the same energy as in part (b) is
Conclusion:
Therefore, the required potential difference across them so that the combination stores the same energy as in part (b) is
(g)
The capacitor stores more energy
(g)
Answer to Problem 34P
The capacitor
Explanation of Solution
Given information: The value of capacitor 1 is
The capacitor
Thus, the capacitor
Conclusion:
Therefore, the capacitor
Want to see more full solutions like this?
Chapter 26 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
- A beam of alpha-particles of energy 7.3MeV is used.The protons emitted at an angle of zero degree are found to have energy of 9.34MeV.Find the Q-value of this reaction .arrow_forwardAn aluminum rod and a copper rod have the same length of 100cm at 5C. At what temperatures would one of the rods be 0.5 mm longer than the other? Which rod is longer at such temperature?arrow_forwardROTATIONAL DYNAMICS Question 01 A solid circular cylinder and a solid spherical ball of the same mass and radius are rolling together down the same inclined. Calculate the ratio of their kinetic energy. Assume pure rolling motion Question 02 A sphere and cylinder of the same mass and radius start from ret at the same point and more down the same plane inclined at 30° to the horizontal Which body gets the bottom first and what is its acceleration b) What angle of inclination of the plane is needed to give the slower body the same acceleration Question 03 i) Define the angular velocity of a rotating body and give its SI unit A car wheel has its angular velocity changing from 2rads to 30 rads seconds. If the radius of the wheel is 400mm. calculate ii) The angular acceleration iii) The tangential linear acceleration of a point on the rim of the wheel Question 04 in 20arrow_forward
- Question B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…arrow_forwardSECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]arrow_forwardPage 2 SECTION A Answer ALL questions in Section A [Expect to use one single-sided A4 page for each Section-A sub question.] Question A1 SPA6308 (2024) Consider Minkowski spacetime in Cartesian coordinates th = (t, x, y, z), such that ds² = dt² + dx² + dy² + dz². (a) Consider the vector with components V" = (1,-1,0,0). Determine V and V. V. (b) Consider now the coordinate system x' (u, v, y, z) such that u =t-x, v=t+x. [2 marks] Write down the line element, the metric, the Christoffel symbols and the Riemann curvature tensor in the new coordinates. [See the Appendix of this document.] [5 marks] (c) Determine V", that is, write the object in question A1.a in the coordinate system x'. Verify explicitly that V. V is invariant under the coordinate transformation. Question A2 [5 marks] Suppose that A, is a covector field, and consider the object Fv=AAμ. (a) Show explicitly that F is a tensor, that is, show that it transforms appropriately under a coordinate transformation. [5 marks] (b)…arrow_forward
- No chatgpt pls will upvote Iarrow_forwardHow would partial obstruction of an air intake port of an air-entrainment mask effect FiO2 and flow?arrow_forward14 Z In figure, a closed surface with q=b= 0.4m/ C = 0.6m if the left edge of the closed surface at position X=a, if E is non-uniform and is given by € = (3 + 2x²) ŷ N/C, calculate the (3+2x²) net electric flux leaving the closed surface.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning