Program Plan:
- Include the required import statement.
- Define the main class.
- Define the main method using public static main.
- Allocate memory to the class “Test”.
- Define the “Test” class.
- Declare the object for the AVLTree2.
- Get the input integers from the user.
- Get the “k” value from the user.
- Display the results.
- Define the “AVLTree2” class.
- Create a default constructor and constructor.
- The “createNewNode” method is used to return the “AVLTree2” value.
- The “rootSize” method is used to return the size of the root.
- The “find” method is used to return searching element.
- The “find” method is used to search the given element in the AVL tree and then return that element.
- Define “insert” method.
- Override the “insert” method in the program.
- Check if the element is already in the tree or not.
- The element is not in the tree balance from element to the root.
- Return the inserted element.
- Define “updateHeight” method.
- If the leaf node is null, set the height of the tree is 0.
- If the left subtree is null, calculate the height and set it into the variable.
- If the right subtree is null, calculate the height and set it into the variable.
- Otherwise, calculate the total height of the tree and set it into the variable.
- Define “updateSize” method.
- If the leaf node is null, set the size of the tree is 1.
- If the left subtree is null, calculate the size and set it into the variable.
- If the right subtree is null, calculate the size and set it into the variable.
- Otherwise, calculate the total size of the tree and set it into the variable.
- Define “balancePath” method.
- Declare the array list.
- Check the size.
- Call the “updateHeight” and “updateSize” methods.
- Balance the nodes in the path from the specified node to the root is necessary.
- Define “balanceFactor” method.
- If the node has no right subtree, return the height.
- If the node has no left subtree, return the height.
- Otherwise return full height.
- Define “balanceLL” method.
- Here “A” is left heavy and “B” is right heavy.
- If “A” is equal to “root”, then assign “B” to “root”.
- Otherwise, if the “parentOfA.left” is equal to “A”, then assign “B” to “parentOfA.left”.
- Otherwise, assign “B” to “parentOfA.right”.
- Make “T1” as left subtree of A and make “A” the left child of “B”.
- Call the methods.
- Define “balanceLR” method.
- Here “A” is left heavy and “B” is right heavy.
- If “A” is equal to “root”, then assign “C” to “root”.
- Otherwise, if the “parentOfA.left” is equal to “A”, then assign “C” to “parentOfA.left”.
- Otherwise, assign “C” to “parentOfA.right”.
- Make “T3” as left subtree of A and make “T2” the left child of “B”.
- Call the methods.
- Define “balanceRR” method.
- Here “A” is left heavy and “B” is right heavy.
- If “A” is equal to “root”, then assign “B” to “root”.
- Otherwise, if the “parentOfA.left” is equal to “A”, then assign “B” to “parentOfA.left”.
- Otherwise, assign “B” to “parentOfA.right”.
- Make “T2” as right subtree of “A”.
- Call the methods.
- Define “balanceRL” method.
- Here “A” is left heavy and “B” is right heavy.
- If “A” is equal to “root”, then assign “C” to “root”.
- Otherwise, if the “parentOfA.left” is equal to “A”, then assign “C” to “parentOfA.left”.
- Otherwise, assign “C” to “parentOfA.right”.
- Make “T3” as left subtree of A and make “T2” the right subtree of “B”.
- Call the methods.
- Define “delete” method.
- If the “root” is null, the element is not in the tree.
- Locate the node to be deleted and also allocate its parent node.
- If the “current” value is null, then the element is not in the tree.
- The “current” has no left children, then connect the parent with the right child of the current node.
- The “current” has a left children, then locate the rightmost node in the left subtree of the current node and also its parent.
- Replace the element in current by the element in rightmost.
- Balance the tree if necessary.
- Return the inserted element.
- Define “AVLTree2Node” method.
- Declare the variable.
- Override the method.
- Define the “BST2” class.
- Declare the required variables.
- Create a default BST2 class.
- Create a binary tree from an array of objects.
- The “height” method will return the height of the tree.
- Define the “search” method.
- Start the traverse from the root of the tree.
- If the search element is in the left subtree set that value in “current” variable otherwise set the “current” variable as right subtree value.
- Define the “insert” method.
- If the root is null create the tree otherwise insert the value into left or right subtree.
- Define the “createNewNode”
- Return the result of new node creations.
- Define the “inorder”
- Inorder traverse from the root.
- Define the protected “inorder” method
- Traverse the tree according to the inorder traversal concept.
- Define the “postorder”
- Postorder traverse from the root.
- Define the protected “postorder” method
- Traverse the tree according to the postorder traversal concept.
- Define the “preorder”
- Preorder traverse from the root.
- Define the protected “preorder” method
- Traverse the tree according to the preorder traversal concept.
- Define the “TreeNode” class
- Declare the required variables.
- Define the constructor.
- Define the “getSize” method.
- Return the size.
- Define the “getRoot” method
- Return the root.
- Define the “java.util.ArrayList” method.
- Create an object for the array list.
- If the “current” is not equal to null, add the value to the list.
- If the “current” is less than 0, set the “current” as left subtree element otherwise set the “current” as right subtree element.
- Return the list.
- Define the “delete” method.
- If the “current” is not equal to null, add the value to the list.
- If the “current” is less than 0, delete the “current” as left subtree element otherwise delete the “current” as right subtree element.
- Return the list.
- Define the “iterator” method.
- Call the “inorderIterator” and return the value.
- Define the “inorderIterator”
- Create an object for that method and return the value
- Define the “inorderIterator” class.
- Declare the variables.
- Define the constructor.
- Call the “inorder” method.
- Define the “inorder” method.
- Call the inner “inorder” method with the argument.
- Define the TreeNode “inorder” method.
- If the root value is null return the value, otherwise add the value into the list.
- Define the “hasNext” method
- If the “current” value is less than size of the list return true otherwise return false.
- Define the “next” method
- Return the list.
- Define the “remove” method.
- Call the delete method.
- Clear the list then call the “inorder” method.
- Define the “clear” method
- Set the values to the variables
- Define the main method using public static main.
Tree.java:
- Include the required import statement
- Define the interface in “Tree” class.
- Declare the required methods.
- Define the required methods.
The below program will get the input integers from the user and find the kth minimum value in the list as follows:
Explanation of Solution
Program:
“Tree.java” is referred in Listing 25.3 from chapter 25 (Page No.:958).
//Test.java
//import statement
import java.util.Collection;
import java.util.Scanner;
//class Test
public class Test
{
// main method
public static void main(String[] args)
{
//create the objects
AVLTree2<Double> tree = new AVLTree2<>();
Scanner input = new Scanner(System.in);
/* prompt the user to enter 15 integers and store them in the tree*/
System.out.print("Enter 15 numbers: ");
for (int i = 0; i < 15; i++)
{
//insert into the tree
tree.insert(input.nextDouble());
}
//get the "k" number from the user
System.out.print("Enter k: ");
double k = input.nextDouble();
//display the output
System.out.println("The " + (int)k + "th smallest number is " + tree.find(k));
}
}
//definition of "AVLTree2" class
class AVLTree2<E extends Comparable<E>> extends BST2<E>
{
//create a default constructor
public AVLTree2()
{
}
//create a constructor
public AVLTree2(E[] objects)
{
//rebuild the objects
super(objects);
}
@Override
//definition of "createNewNode" method
protected AVLTree2Node<E> createNewNode(E e)
{
//return statement
return new AVLTree2Node<E>(e);
}
//definition of "rootSize" method
public int rootSize()
{
//return statement
return ((AVLTree2Node<E>) this.root).size;
}
//definition of "find" method
public E find(double k)
{
//return statement
return find(k, (AVLTree2Node<E>) this.root);
}
//definition of "find" method
public E find(double k, AVLTree2Node<E> node)
{
//check the condition
if (k < 0 || k > this.size)
{
//return statement
return null;
}
//check the condition
else if (node.left == null && k == 1)
{
//return statement
return node.element;
}
//check the condition
else if (node.left == null && k == 2)
{
//return statement
return node.right.element;
}
//check the condition
else if (k <= ((AVLTree2Node<E>) node.left).size)
{
//return statement
return find(k, (AVLTree2Node<E>) node.left);
}
//check the condition
else if (k == (((AVLTree2Node<E>) node.left).size) + 1)
{
//return statement
return node.element;
}
//otherwise
else
{
//return statement
return find(k - (((AVLTree2Node<E>) node.left).size) - 1,(AVLTree2Node<E>) node.right);
}
}
@Override
//definition of "insert" method
public boolean insert(E e)
{
//declare the variable
boolean successful = super.insert(e);
//check the condition
if (!successful)
{
//return statement
return false;
}
else
{
//call the method
balancePath(e);
}
//return statement
return true;
}
//definition of "updateHeight" method
private void updateHeight(AVLTree2Node<E> node)
{
//check the condition
if (node.left == null && node.right == null)
{
//assign the value
node.height = 0;
}
//check the condition
else if (node.left == null)
{
// calculate and assign the value
node.height = 1 + ((AVLTree2Node<E>) (node.right)).height;
}
//check the condition
else if (node.right == null)
{
//calculate and assign the value
node.height = 1 + ((AVLTree2Node<E>) (node.left)).height;
}
else
{
//calculate and assign the value
node.height = 1 + Math.max(((AVLTree2Node<E>) (node.right)).height, ((AVLTree2Node<E>) (node.left)).height);
}
}
//definition of "updateSize" method
private void updateSize(AVLTree2Node<E> node)
{
//check the condition
if (node.left == null && node.right == null)
{
//assign the value
node.size = 1;
}
//check the condition
else if (node.left == null)
{
//calculate and assign the value
node.size = 1 + ((AVLTree2Node<E>) (node.right)).size;
}
//check the condition
else if (node.right == null)
{
//calculate and assign the value
node.size = 1 + ((AVLTree2Node<E>) (node.left)).size;
}
else
{
//calculate and assign the value
node.size = 1 + (((AVLTree2Node<E>) (node.right)).size) + (((AVLTree2Node<E>) (node.left)).size);
}
}
//definition of "balancePath" method
private void balancePath(E e)
{
//set the path
java.util.ArrayList<TreeNode<E>> path = path(e);
//check the condition
for (int i = path.size() - 1; i >= 0; i--)
{
//set the path
AVLTree2Node<E> A = (AVLTree2Node<E>) (path.get(i));
//call the method
updateHeight(A);
updateSize(A);
/*check the condition and set it into the "parentOFA" variable*/
AVLTree2Node<E> parentOfA = (A == root) ? null : (AVLTree2Node<E>) (path
.get(i - 1));
//check the condition
switch (balanceFactor(A))
{
case -2:
//check the condition
if (balanceFactor((AVLTree2Node<E>) A.left) <= 0)
{
// perform LL rotation
balanceLL(A, parentOfA);
}
else
{
// perform LR rotation
balanceLR(A, parentOfA);
}
break;
case +2:
//check the condition
if (balanceFactor((AVLTree2Node<E>) A.right) >= 0)
{
// perform RR rotation
balanceRR(A, parentOfA);
}
else
{
// perform RL rotation
balanceRL(A, parentOfA);
}
}
}
}
//definition of "balanceFactor" method
private int balanceFactor(AVLTree2Node<E> node)
{
//check the condition
if (node.right == null)
{
//return statement
return -node.height;
}
//check the condition
else if (node.left == null)
{
//return statement
return +node.height;
}
else
{
//return statement
return ((AVLTree2Node<E>) node.right).height
- ((AVLTree2Node<E>) node.left).height;
}
}
//defintion of "balanceLL" method
private void balanceLL(TreeNode<E> A, TreeNode<E> parentOfA)
{
//set the value
TreeNode<E> B = A.left;
//check the condition
if (A == root)
{
//set the value
root = B;
}
else
{
//check the condition
if (parentOfA.left == A)
{
//set the value
parentOfA.left = B;
}
else
{
//set the value
parentOfA.right = B;
}
}
//set the value
A.left = B.right;
B.right = A;
// call the method and adjust heights
updateHeight((AVLTree2Node<E>) A);
updateSize((AVLTree2Node<E>) A);
updateHeight((AVLTree2Node<E>) B);
updateSize((AVLTree2Node<E>) B);
}
//definition of "balanceLR" method
private void balanceLR(TreeNode<E> A, TreeNode<E> parentOfA)
{
//set the value
TreeNode<E> B = A.left;
TreeNode<E> C = B.right;
//check the condition
if (A == root)
{
//set the value
root = C;
}
else
{
//check the condition
if (parentOfA.left == A)
{
//set the value
parentOfA.left = C;
}
else
{
//set the value
parentOfA.right = C;
}
}
//set the values
A.left = C.right;
B.right = C.left;
C.left = B;
C.right = A;
// call the method and adjust heights
updateHeight((AVLTree2Node<E>) A);
updateHeight((AVLTree2Node<E>) B);
updateHeight((AVLTree2Node<E>) C);
updateSize((AVLTree2Node<E>) A);
updateSize((AVLTree2Node<E>) B);
updateSize((AVLTree2Node<E>) C);
}
//definition of "balanceRR" method
private void balanceRR(TreeNode<E> A, TreeNode<E> parentOfA)
{
//set the value
TreeNode<E> B = A.right;
//check the condition
if (A == root)
{
//set the value
root = B;
}
else
{
//check the condition
if (parentOfA.left == A)
{
//set the value
parentOfA.left = B;
}
else
{
//set the value
parentOfA.right = B;
}
}
//set the value
A.right = B.left;
B.left = A;
//call the methods
updateHeight((AVLTree2Node<E>) A);
updateHeight((AVLTree2Node<E>) B);
updateSize((AVLTree2Node<E>) A);
updateSize((AVLTree2Node<E>) B);
}
//definition of "balanceRL" method
private void balanceRL(TreeNode<E> A, TreeNode<E> parentOfA)
{
//set the value
TreeNode<E> B = A.right;
TreeNode<E> C = B.left;
//check the condition
if (A == root)
{
//set the value
root = C;
}
else
{
//check the condition
if (parentOfA.left == A)
{
//set the value
parentOfA.left = C;
}
else
{
//set the value
parentOfA.right = C;
}
}
//set the values
A.right = C.left;
B.left = C.right;
C.left = A;
C.right = B;
// call the methods and adjust heights
updateHeight((AVLTree2Node<E>) A);
updateHeight((AVLTree2Node<E>) B);
updateHeight((AVLTree2Node<E>) C);
updateSize((AVLTree2Node<E>) A);
updateSize((AVLTree2Node<E>) B);
updateSize((AVLTree2Node<E>) C);
}
@Override
//definition of "delete" method
public boolean delete(E element)
{
//check the condition
if (root == null)
{
//return statement
return false;
}
// declare the variables
TreeNode<E> parent = null;
TreeNode<E> current = root;
//check the condition
while (current != null)
{
//check the condition
if (element.compareTo(current.element) < 0)
{
//set the value
parent = current;
current = current.left;
}
//check the condition
else if (element.compareTo(current.element) > 0)
{
//set the value
parent = current;
current = current.right;
}
else
{
//break statement
break;
}
}
//check the condition
if (current == null)
{
//return statement
return false;
}
//check the condition
if (current.left == null)
{
//check the condition
if (parent == null)
{
//set the value
root = current.right;
}
else
{
//check the condition
if (element.compareTo(parent.element) < 0)
{
//set the value
parent.left = current.right;
}
else
{
//set the value
parent.right = current.right;
}
//set the value
balancePath(parent.element);
}
}
else
{
//set the value
TreeNode<E> parentOfRightMost = current;
TreeNode<E> rightMost = current.left;
//check the condition
while (rightMost.right != null)
{
//set the value
parentOfRightMost = rightMost;
rightMost = rightMost.right;
}
//set the value
current.element = rightMost.element;
//check the condition
if (parentOfRightMost.right == rightMost)
{
//set the value
parentOfRightMost.right = rightMost.left;
}
else
{
//set the value
parentOfRightMost.left = rightMost.left;
}
// balance the tree if necessary
balancePath(parentOfRightMost.element);
}
//decrement the "size"
size--;
//return statement
return true;
}
//definition of "AVLTree2Node" class
protected static class AVLTree2Node<E extends Comparable<E>> extends
BST2.TreeNode<E>
{
//declare the required variables
protected int height = 0;
protected int size = 0;
//constructor
public AVLTree2Node(E o)
{
//override the method
super(o);
}
}
}
//definition of "BST" class
class BST2<E extends Comparable<E>> implements Tree<E>
{
//declare the variables
protected TreeNode<E> root;
protected int size = 0;
//create a default binary tree
public BST2()
{
}
//create a binary tree from an array of objects
public BST2(E[] objects)
{
//check the condition
for (int i = 0; i < objects.length; i++)
{
//insert the values
insert(objects[i]);
}
}
@Override
//definition of "search" method
public boolean search(E e)
{
//start from the root
TreeNode<E> current = root;
//check the condition
while (current != null)
{
//check the condition
if (e.compareTo(current.element) < 0)
{
//set the value
current = current.left;
}
//check the condition
else if (e.compareTo(current.element) > 0)
{
//set the value
current = current.right;
}
//otherwise
else
{
//return statement
return true;
}
}
//return statement
return false;
}
@Override
//definition of "insert" method
public boolean insert(E e)
{
//check the condition
if (root == null)
{
//create a new root
root = createNewNode(e);
}
//otherwise
else
{
// locate the parent node
TreeNode<E> parent = null;
TreeNode<E> current = root;
//check the condition
while (current != null)
{
//check the condition
if (e.compareTo(current.element) < 0)
{
//set the value
parent = current;
current = current.left;
}
//check the condition
else if (e.compareTo(current.element) > 0)
{
//set the value
parent = current;
current = current.right;
}
else
{
//return statement
return false;
}
}
//check the condition
if (e.compareTo(parent.element) < 0)
{
//create a new node
parent.left = createNewNode(e);
}
else
{
//create a new node
parent.right = createNewNode(e);
}
}
//increment the size
size++;
//return statement
return true;
}
//definition of "createNewNode"
protected TreeNode<E> createNewNode(E e)
{
//return the statement
return new TreeNode<E>(e);
}
@Override
//definition of "inorder"
public void inorder()
{
//inorder traverse from the root
inorder(root);
}
//definition of inorder
protected void inorder(TreeNode<E> root)
{
//check the condition
if (root == null)
{
//return statement
return;
}
// inorder traversal from a subtree
inorder(root.left);
//display the element
System.out.print(root.element + " ");
// inorder traversal from a subtree
inorder(root.right);
}
@Override
// definition of "postoder"
public void postorder()
{
// postorder traversal from the root
postorder(root);
}
// definition of "postorder"
protected void postorder(TreeNode<E> root)
{
//check the condition
if (root == null)
{
//return statement
return;
}
//postorder traversal from a subtree
postorder(root.left);
postorder(root.right);
//display the element
System.out.print(root.element + " ");
}
@Override
//definition of "preorder"
public void preorder()
{
// preorder traversal from the root
preorder(root);
}
//definition of "preorder"
protected void preorder(TreeNode<E> root)
{
//check the condition
if (root == null)
{
//return statement
return;
}
//display the value
System.out.print(root.element + " ");
// preorder traversal from a subtree
preorder(root.left);
preorder(root.right);
}
//definition of "TreeNode" class
public static class TreeNode<E extends Comparable<E>>
{
//declare the variables
protected E element;
protected TreeNode<E> left;
protected TreeNode<E> right;
//definition of constructor
public TreeNode(E e)
{
//set the value
element = e;
}
}
@Override
// definition of "getSize" method
public int getSize()
{
//return statement
return size;
}
// definition of "getRoot" method
public TreeNode getRoot()
{
//return statement
return root;
}
// definition of method
public java.util.ArrayList<TreeNode<E>> path(E e)
{
//create an object
java.util.ArrayList<TreeNode<E>> list = new java.util.ArrayList<TreeNode<E>>();
// start from the root
TreeNode<E> current = root;
//check the condition
while (current != null)
{
//add the node to the list
list.add(current);
//check the condition
if (e.compareTo(current.element) < 0)
{
//set the value
current = current.left;
}
//check the condition
else if (e.compareTo(current.element) > 0)
{
//set the value
current = current.right;
}
else
//break statement
break;
}
//return statement
return list;
}
@Override
//definition of "delete" method
public boolean delete(E e)
{
// declare the variables
TreeNode<E> parent = null;
TreeNode<E> current = root;
//check the condition
while (current != null)
{
//check the condition
if (e.compareTo(current.element) < 0)
{
//set the value
parent = current;
current = current.left;
}
//check the condition
else if (e.compareTo(current.element) > 0)
{
//set the value
parent = current;
current = current.right;
}
else
//break statement
break;
}
//check the condition
if (current == null)
return false;
//check the condition
if (current.left == null)
{
//check the condition
if (parent == null)
{
//set the value
root = current.right;
}
else
{
//check the condition
if (e.compareTo(parent.element) < 0)
//set the value
parent.left = current.right;
else
//set the value
parent.right = current.right;
}
}
else
{
//set the value
TreeNode<E> parentOfRightMost = current;
TreeNode<E> rightMost = current.left;
//check the condition
while (rightMost.right != null)
{
//set the value
parentOfRightMost = rightMost;
rightMost = rightMost.right;
}
//set the value
current.element = rightMost.element;
//check the condition
if (parentOfRightMost.right == rightMost)
//set the value
parentOfRightMost.right = rightMost.left;
else
//set the value
parentOfRightMost.left = rightMost.left;
}
//decrement the "size"
size--;
//return statement
return true;
}
@Override
//definition of "inorderIterator"
public java.util.Iterator<E> iterator()
{
//return statement
return new InorderIterator();
}
// definition of class "InorderIterator"
class InorderIterator implements java.util.Iterator
{
// store the elements in a list
private java.util.ArrayList<E> list = new java.util.ArrayList<E>();
//declare the variable
private int current = 0;
//constructor
public InorderIterator()
{
//call the method
inorder();
}
//definition of inorder traversal from the root
private void inorder()
{
//call the method
inorder(root);
}
/*definition of inorder traversal from a subtree */
private void inorder(TreeNode<E> root)
{
//check the condition
if (root == null)
//return statement
return;
//call the method
inorder(root.left);
//add the value to the list
list.add(root.element);
//call the method
inorder(root.right);
}
//definition of "hasNext"
public boolean hasNext()
{
//check the condition
if (current < list.size())
//return statement
return true;
//return statement
return false;
}
//definition of "next" method
public Object next()
{
//return statement
return list.get(current++);
}
// definition of "remove" method
public void remove()
{
//delete the current element
delete(list.get(current));
// clear the list
list.clear();
// rebuild the list
inorder();
}
}
// definition of "clear" method
public void clear()
{
//set the values
root = null;
size = 0;
}
}
Enter 15 numbers: 3
5
1
8
4
7
12
10
9
6
11
14
0
15
2
Enter k: 4
The 4th smallest number is 3.0
Want to see more full solutions like this?
Chapter 26 Solutions
Introduction to Java Programming and Data Structures, Comprehensive Version Plus MyProgrammingLab with Pearson EText -- Access Card Package
- Consider the following expression in C: a/b > 0 && b/a > 0. What will be the result of evaluating this expression when a is zero? What will be the result when b is zero? Would it make sense to try to design a language in which this expression is guaranteed to evaluate to false when either a or b (but not both) is zero? Explain your answer.arrow_forwardWhat are the major threats of using the internet? How do you use it? How do children use it? How canwe secure it? Provide four references with your answer. Two of the refernces can be from an article and the other two from websites.arrow_forwardAssume that a string of name & surname is saved in S. The alphabetical characters in S can be in lowercase and/or uppercase letters. Name and surname are assumed to be separated by a space character and the string ends with a full stop "." character. Write an assembly language program that will copy the name to NAME in lowercase and the surname to SNAME in uppercase letters. Assume that name and/or surname cannot exceed 20 characters. The program should be general and work with every possible string with name & surname. However, you can consider the data segment definition given below in your program. .DATA S DB 'Mahmoud Obaid." NAME DB 20 DUP(?) SNAME DB 20 DUP(?) Hint: Uppercase characters are ordered between 'A' (41H) and 'Z' (5AH) and lowercase characters are ordered between 'a' (61H) and 'z' (7AH) in the in the ASCII Code table. For lowercase letters, bit 5 (d5) of the ASCII code is 1 where for uppercase letters it is 0. For example, Letter 'h' Binary ASCII 01101000 68H 'H'…arrow_forward
- What did you find most interesting or surprising about the scientist Lavoiser?arrow_forward1. Complete the routing table for R2 as per the table shown below when implementing RIP routing Protocol? (14 marks) 195.2.4.0 130.10.0.0 195.2.4.1 m1 130.10.0.2 mo R2 R3 130.10.0.1 195.2.5.1 195.2.5.0 195.2.5.2 195.2.6.1 195.2.6.0 m2 130.11.0.0 130.11.0.2 205.5.5.0 205.5.5.1 R4 130.11.0.1 205.5.6.1 205.5.6.0arrow_forwardAnalyze the charts and introduce each charts by describing each. Identify the patterns in the given data. And determine how are the data points are related. Refer to the raw data (table):arrow_forward
- 3A) Generate a hash table for the following values: 11, 9, 6, 28, 19, 46, 34, 14. Assume the table size is 9 and the primary hash function is h(k) = k % 9. i) Hash table using quadratic probing ii) Hash table with a secondary hash function of h2(k) = 7- (k%7) 3B) Demonstrate with a suitable example, any three possible ways to remove the keys and yet maintaining the properties of a B-Tree. 3C) Differentiate between Greedy and Dynamic Programming.arrow_forwardWhat are the charts (with their title name) that could be use to illustrate the data? Please give picture examples.arrow_forwardA design for a synchronous divide-by-six Gray counter isrequired which meets the following specification.The system has 2 inputs, PAUSE and SKIP:• While PAUSE and SKIP are not asserted (logic 0), thecounter continually loops through the Gray coded binarysequence {0002, 0012, 0112, 0102, 1102, 1112}.• If PAUSE is asserted (logic 1) when the counter is onnumber 0102, it stays here until it becomes unasserted (atwhich point it continues counting as before).• While SKIP is asserted (logic 1), the counter misses outodd numbers, i.e. it loops through the sequence {0002,0112, 1102}.The system has 4 outputs, BIT3, BIT2, BIT1, and WAITING:• BIT3, BIT2, and BIT1 are unconditional outputsrepresenting the current number, where BIT3 is the mostsignificant-bit and BIT1 is the least-significant-bit.• An active-high conditional output WAITING should beasserted (logic 1) whenever the counter is paused at 0102.(a) Draw an ASM chart for a synchronous system to providethe functionality described above.(b)…arrow_forward
- S A B D FL I C J E G H T K L Figure 1: Search tree 1. Uninformed search algorithms (6 points) Based on the search tree in Figure 1, provide the trace to find a path from the start node S to a goal node T for the following three uninformed search algorithms. When a node has multiple successors, use the left-to-right convention. a. Depth first search (2 points) b. Breadth first search (2 points) c. Iterative deepening search (2 points)arrow_forwardWe want to get an idea of how many tickets we have and what our issues are. Print the ticket ID number, ticket description, ticket priority, ticket status, and, if the information is available, employee first name assigned to it for our records. Include all tickets regardless of whether they have been assigned to an employee or not. Sort it alphabetically by ticket status, and then numerically by ticket ID, with the lower ticket IDs on top.arrow_forwardFigure 1 shows an ASM chart representing the operation of a controller. Stateassignments for each state are indicated in square brackets for [Q1, Q0].Using the ASM design technique:(a) Produce a State Transition Table from the ASM Chart in Figure 1.(b) Extract minimised Boolean expressions from your state transition tablefor Q1, Q0, DISPATCH and REJECT. Show all your working.(c) Implement your design using AND/OR/NOT logic gates and risingedgetriggered D-type Flip Flops. Your answer should include a circuitschematic.arrow_forward
- New Perspectives on HTML5, CSS3, and JavaScriptComputer ScienceISBN:9781305503922Author:Patrick M. CareyPublisher:Cengage LearningC++ Programming: From Problem Analysis to Program...Computer ScienceISBN:9781337102087Author:D. S. MalikPublisher:Cengage LearningSystems ArchitectureComputer ScienceISBN:9781305080195Author:Stephen D. BurdPublisher:Cengage Learning
- Programming Logic & Design ComprehensiveComputer ScienceISBN:9781337669405Author:FARRELLPublisher:CengageEBK JAVA PROGRAMMINGComputer ScienceISBN:9781337671385Author:FARRELLPublisher:CENGAGE LEARNING - CONSIGNMENT