Introduction to Java Programming and Data Structures, Comprehensive Version (11th Edition)
Introduction to Java Programming and Data Structures, Comprehensive Version (11th Edition)
11th Edition
ISBN: 9780134670942
Author: Y. Daniel Liang
Publisher: PEARSON
Question
Book Icon
Chapter 26, Problem 26.5PE
Program Plan Intro

Program Plan:

  • Include the required import statement.
  • Define the main class.
    • Define the main method using public static main.
      • Allocate memory to the class “Test”.
      • Define the “Test” class.
      • Declare the object for the AVLTree2.
      • Get the input integers from the user.
      • Get the “k” value from the user.
      • Display the results.
    • Define the “AVLTree2” class.
      • Create a default constructor and constructor.
      • The “createNewNode” method is used to return the “AVLTree2” value.
      • The “rootSize” method is used to return the size of the root.
      • The “find” method is used to return searching element.
      • The “find” method is used to search the given element in the AVL tree and then return that element.
      • Define “insert” method.
        • Override the “insert” method in the program.
        • Check if the element is already in the tree or not.
        • The element is not in the tree balance from element to the root.
        • Return the inserted element.
      • Define “updateHeight” method.
        • If the leaf node is null, set the height of the tree is 0.
        • If the left subtree is null, calculate the height and set it into the variable.
        • If the right subtree is null, calculate the height and set it into the variable.
        • Otherwise, calculate the total height of the tree and set it into the variable.
      • Define “updateSize” method.
        • If the leaf node is null, set the size of the tree is 1.
        • If the left subtree is null, calculate the size and set it into the variable.
        • If the right subtree is null, calculate the size and set it into the variable.
        • Otherwise, calculate the total size of the tree and set it into the variable.
      • Define “balancePath” method.
        • Declare the array list.
        • Check the size.
        • Call the “updateHeight” and “updateSize” methods.
        • Balance the nodes in the path from the specified node to the root is necessary.
      • Define “balanceFactor” method.
        • If the node has no right subtree, return the height.
        • If the node has no left subtree, return the height.
        • Otherwise return full height.
      • Define “balanceLL” method.
        • Here “A” is left heavy and “B” is right heavy.
        • If “A” is equal to “root”, then assign “B” to “root”.
        • Otherwise, if the “parentOfA.left” is equal to “A”, then assign “B” to “parentOfA.left”.
          • Otherwise, assign “B” to “parentOfA.right”.
        • Make “T1” as left subtree of A and make “A” the left child of “B”.
        • Call the methods.
      • Define “balanceLR” method.
        • Here “A” is left heavy and “B” is right heavy.
        • If “A” is equal to “root”, then assign “C” to “root”.
        • Otherwise, if the “parentOfA.left” is equal to “A”, then assign “C” to “parentOfA.left”.
          • Otherwise, assign “C” to “parentOfA.right”.
        • Make “T3” as left subtree of A and make “T2” the left child of “B”.
      • Call the methods.
      • Define “balanceRR” method.
        • Here “A” is left heavy and “B” is right heavy.
        • If “A” is equal to “root”, then assign “B” to “root”.
        • Otherwise, if the “parentOfA.left” is equal to “A”, then assign “B” to “parentOfA.left”.
          • Otherwise, assign “B” to “parentOfA.right”.
        • Make “T2” as right subtree of “A”.
        • Call the methods.
      • Define “balanceRL” method.
        • Here “A” is left heavy and “B” is right heavy.
        • If “A” is equal to “root”, then assign “C” to “root”.
        • Otherwise, if the “parentOfA.left” is equal to “A”, then assign “C” to “parentOfA.left”.
          • Otherwise, assign “C” to “parentOfA.right”.
        • Make “T3” as left subtree of A and make “T2” the right subtree of “B”.
        • Call the methods.
      • Define “delete” method.
        • If the “root” is null, the element is not in the tree.
        • Locate the node to be deleted and also allocate its parent node.
        • If the “current” value is null, then the element is not in the tree.
        • The “current” has no left children, then connect the parent with the right child of the current node.
        • The “current” has a left children, then locate the rightmost node in the left subtree of the current node and also its parent.
        • Replace the element in current by the element in rightmost.
        • Balance the tree if necessary.
        • Return the inserted element.
      • Define “AVLTree2Node” method.
        • Declare the variable.
        • Override the method.
    • Define the “BST2” class.
      • Declare the required variables.
      • Create a default BST2 class.
      • Create a binary tree from an array of objects.
      • The “height” method will return the height of the tree.
      • Define the “search” method.
        • Start the traverse from the root of the tree.
        • If the search element is in the left subtree set that value in “current” variable otherwise set the “current” variable as right subtree value.
      • Define the “insert” method.
        • If the root is null create the tree otherwise insert the value into left or right subtree.
      • Define the “createNewNode”
        • Return the result of new node creations.
      • Define the “inorder”
        • Inorder traverse from the root.
      • Define the protected “inorder” method
        • Traverse the tree according to the inorder traversal concept.
      • Define the “postorder”
        • Postorder traverse from the root.
      • Define the protected “postorder” method
        • Traverse the tree according to the postorder traversal concept.
      • Define the “preorder”
        • Preorder traverse from the root.
      • Define the protected “preorder” method
        • Traverse the tree according to the preorder traversal concept.
      • Define the “TreeNode” class
        • Declare the required variables.
        • Define the constructor.
      • Define the “getSize” method.
        • Return the size.
      • Define the “getRoot” method
        • Return the root.
      • Define the “java.util.ArrayList” method.
        • Create an object for the array list.
        • If the “current” is not equal to null, add the value to the list.
        • If the “current” is less than 0, set the “current” as left subtree element otherwise set the “current” as right subtree element.
        • Return the list.
      • Define the “delete” method.
        • If the “current” is not equal to null, add the value to the list.
        • If the “current” is less than 0, delete the “current” as left subtree element otherwise delete the “current” as right subtree element.
        • Return the list.
      • Define the “iterator” method.
        • Call the “inorderIterator” and return the value.
      • Define the “inorderIterator”
        • Create an object for that method and return the value
      • Define the “inorderIterator” class.
        • Declare the variables.
        • Define the constructor.
          • Call the “inorder” method.
        • Define the “inorder” method.
          • Call the inner “inorder” method with the argument.
        • Define the TreeNode “inorder” method.
          • If the root value is null return the value, otherwise add the value into the list.
        • Define the “hasNext” method
          • If the “current” value is less than size of the list return true otherwise return false.
        • Define the “next” method
          • Return the list.
        • Define the “remove” method.
          • Call the delete method.
          • Clear the list then call the “inorder” method.
      • Define the “clear” method
        • Set the values to the variables

Tree.java:

  • Include the required import statement
  • Define the interface in “Tree” class.
    • Declare the required methods.
    • Define the required methods.

Expert Solution & Answer
Check Mark
Program Description Answer

The below program will get the input integers from the user and find the kth minimum value in the list as follows:

Explanation of Solution

Program:

“Tree.java” is referred in Listing 25.3 from chapter 25 (Page No.:958).

//Test.java

//import statement

import java.util.Collection;

import java.util.Scanner;

//class Test

public class Test

{

// main method

public static void main(String[] args)

{

//create the objects

AVLTree2<Double> tree = new AVLTree2<>();

Scanner input = new Scanner(System.in);

/* prompt the user to enter 15 integers and store them in the tree*/

System.out.print("Enter 15 numbers: ");

for (int i = 0; i < 15; i++)

{

//insert into the tree

tree.insert(input.nextDouble());

}

//get the "k" number from the user

System.out.print("Enter k: ");

double k = input.nextDouble();

//display the output

System.out.println("The " + (int)k + "th smallest number is " + tree.find(k));

}

}

//definition of "AVLTree2" class

class AVLTree2<E extends Comparable<E>> extends BST2<E>

{

//create a default constructor

public AVLTree2()

{

}

//create a constructor

public AVLTree2(E[] objects)

{

//rebuild the objects

super(objects);

}

@Override

//definition of "createNewNode" method

protected AVLTree2Node<E> createNewNode(E e)

{

//return statement

return new AVLTree2Node<E>(e);

}

//definition of "rootSize" method

public int rootSize()

{

//return statement

return ((AVLTree2Node<E>) this.root).size;

}

//definition of "find" method

public E find(double k)

{

//return statement

return find(k, (AVLTree2Node<E>) this.root);

}

//definition of "find" method

public E find(double k, AVLTree2Node<E> node)

{

//check the condition

if (k < 0 || k > this.size)

{

//return statement

return null;

}

//check the condition

else if (node.left == null && k == 1)

{

//return statement

return node.element;

}

//check the condition

else if (node.left == null && k == 2)

{

//return statement

return node.right.element;

}

//check the condition

else if (k <= ((AVLTree2Node<E>) node.left).size)

{

//return statement

return find(k, (AVLTree2Node<E>) node.left);

}

//check the condition

else if (k == (((AVLTree2Node<E>) node.left).size) + 1)

{

//return statement

return node.element;

}

//otherwise

else

{

//return statement

return find(k - (((AVLTree2Node<E>) node.left).size) - 1,(AVLTree2Node<E>) node.right);

}

}

@Override

//definition of "insert" method 

public boolean insert(E e)

{

//declare the variable

boolean successful = super.insert(e);

//check the condition

if (!successful)

{

//return statement

return false;

}

else

{

//call the method

balancePath(e);

}

//return statement

return true;

}

//definition of "updateHeight" method

private void updateHeight(AVLTree2Node<E> node)

{

//check the condition

if (node.left == null && node.right == null)

{

//assign the value

node.height = 0;

}

//check the condition

else if (node.left == null)

{

// calculate and assign the value

node.height = 1 + ((AVLTree2Node<E>) (node.right)).height;

}

//check the condition

else if (node.right == null)

{

//calculate and assign the value

node.height = 1 + ((AVLTree2Node<E>) (node.left)).height;

}

else

{

//calculate and assign the value

node.height = 1 + Math.max(((AVLTree2Node<E>) (node.right)).height, ((AVLTree2Node<E>) (node.left)).height);

}

}

//definition of "updateSize" method

private void updateSize(AVLTree2Node<E> node)

{

//check the condition

if (node.left == null && node.right == null)

{

//assign the value

node.size = 1;

}

//check the condition

else if (node.left == null)

{

//calculate and assign the value

node.size = 1 + ((AVLTree2Node<E>) (node.right)).size;

}

//check the condition

else if (node.right == null)

{

//calculate and assign the value

node.size = 1 + ((AVLTree2Node<E>) (node.left)).size;

}

else

{

//calculate and assign the value

node.size = 1 + (((AVLTree2Node<E>) (node.right)).size) + (((AVLTree2Node<E>) (node.left)).size);

}

}

//definition of "balancePath" method

private void balancePath(E e)

{

//set the path

java.util.ArrayList<TreeNode<E>> path = path(e);

//check the condition

for (int i = path.size() - 1; i >= 0; i--)

{

//set the path

AVLTree2Node<E> A = (AVLTree2Node<E>) (path.get(i));

//call the method

updateHeight(A);

updateSize(A);

/*check the condition and set it into the "parentOFA" variable*/

AVLTree2Node<E> parentOfA = (A == root) ? null : (AVLTree2Node<E>) (path

.get(i - 1));

//check the condition

switch (balanceFactor(A))

{

case -2:

//check the condition

if (balanceFactor((AVLTree2Node<E>) A.left) <= 0)

{

// perform LL rotation

balanceLL(A, parentOfA);

}

else

{

// perform LR rotation

balanceLR(A, parentOfA);

}

break;

case +2:

//check the condition

if (balanceFactor((AVLTree2Node<E>) A.right) >= 0)

{

// perform RR rotation

balanceRR(A, parentOfA);

}

else

{

// perform RL rotation

balanceRL(A, parentOfA);

}

}

}

}

//definition of "balanceFactor" method

private int balanceFactor(AVLTree2Node<E> node)

{

//check the condition

if (node.right == null)

{

//return statement

return -node.height;

}

//check the condition

else if (node.left == null)

{

//return statement

return +node.height;

}

else

{

//return statement

return ((AVLTree2Node<E>) node.right).height

- ((AVLTree2Node<E>) node.left).height;

}

}

//defintion of "balanceLL" method

private void balanceLL(TreeNode<E> A, TreeNode<E> parentOfA)

{

//set the value

TreeNode<E> B = A.left;

//check the condition

if (A == root)

{

//set the value

root = B;

}

else

{

//check the condition

if (parentOfA.left == A)

{

//set the value

parentOfA.left = B;

}

else

{

//set the value

parentOfA.right = B;

}

}

//set the value

A.left = B.right;

B.right = A;

// call the method and adjust heights

updateHeight((AVLTree2Node<E>) A);

updateSize((AVLTree2Node<E>) A);

updateHeight((AVLTree2Node<E>) B);

updateSize((AVLTree2Node<E>) B);

}

//definition of "balanceLR" method

private void balanceLR(TreeNode<E> A, TreeNode<E> parentOfA)

{

//set the value

TreeNode<E> B = A.left;

TreeNode<E> C = B.right;

//check the condition

if (A == root)

{

//set the value

root = C;

}

else

{

//check the condition

if (parentOfA.left == A)

{

//set the value

parentOfA.left = C;

}

else

{

//set the value

parentOfA.right = C;

}

}

//set the values

A.left = C.right;

B.right = C.left;

C.left = B;

C.right = A;

// call the method and adjust heights

updateHeight((AVLTree2Node<E>) A);

updateHeight((AVLTree2Node<E>) B);

updateHeight((AVLTree2Node<E>) C);

updateSize((AVLTree2Node<E>) A);

updateSize((AVLTree2Node<E>) B);

updateSize((AVLTree2Node<E>) C);

}

//definition of "balanceRR" method

private void balanceRR(TreeNode<E> A, TreeNode<E> parentOfA)

{

//set the value

TreeNode<E> B = A.right;

//check the condition

if (A == root)

{

//set the value

root = B;

}

else

{

//check the condition

if (parentOfA.left == A)

{

//set the value

parentOfA.left = B;

}

else

{

//set the value

parentOfA.right = B;

}

}

//set the value

A.right = B.left;

B.left = A;

//call the methods

updateHeight((AVLTree2Node<E>) A);

updateHeight((AVLTree2Node<E>) B);

updateSize((AVLTree2Node<E>) A);

updateSize((AVLTree2Node<E>) B);

}

//definition of "balanceRL" method

private void balanceRL(TreeNode<E> A, TreeNode<E> parentOfA)

{

//set the value

TreeNode<E> B = A.right;

TreeNode<E> C = B.left;

//check the condition

if (A == root)

{

//set the value

root = C;

}

else

{

//check the condition

if (parentOfA.left == A)

{

//set the value

parentOfA.left = C;

}

else

{

//set the value

parentOfA.right = C;

}

}

//set the values

A.right = C.left;

B.left = C.right;

C.left = A;

C.right = B;

// call the methods and adjust heights

updateHeight((AVLTree2Node<E>) A);

updateHeight((AVLTree2Node<E>) B);

updateHeight((AVLTree2Node<E>) C);

updateSize((AVLTree2Node<E>) A);

updateSize((AVLTree2Node<E>) B);

updateSize((AVLTree2Node<E>) C);

}

@Override

//definition of "delete" method

public boolean delete(E element)

{

//check the condition

if (root == null)

{

//return statement

return false;

}

// declare the variables

TreeNode<E> parent = null;

TreeNode<E> current = root;

//check the condition

while (current != null)

{

//check the condition

if (element.compareTo(current.element) < 0)

{

//set the value

parent = current;

current = current.left;

}

//check the condition

else if (element.compareTo(current.element) > 0)

{

//set the value

parent = current;

current = current.right;

}

else

{

//break statement

break;

}

}

//check the condition

if (current == null)

{

//return statement

return false;

}

//check the condition

if (current.left == null)

{

//check the condition

if (parent == null)

{

//set the value

root = current.right;

}

else

{

//check the condition

if (element.compareTo(parent.element) < 0)

{

//set the value

parent.left = current.right;

}

else

{

//set the value

parent.right = current.right;

}

//set the value

balancePath(parent.element);

}

}

else

{

//set the value

TreeNode<E> parentOfRightMost = current;

TreeNode<E> rightMost = current.left;

//check the condition

while (rightMost.right != null)

{

//set the value

parentOfRightMost = rightMost;

rightMost = rightMost.right;

}

//set the value

current.element = rightMost.element;

//check the condition

if (parentOfRightMost.right == rightMost)

{

//set the value

parentOfRightMost.right = rightMost.left;

}

else

{

//set the value

parentOfRightMost.left = rightMost.left;

}

// balance the tree if necessary

balancePath(parentOfRightMost.element);

}

//decrement the "size"

size--;

//return statement

return true;

}

//definition of "AVLTree2Node" class

protected static class AVLTree2Node<E extends Comparable<E>> extends

BST2.TreeNode<E>

{

//declare the required variables

protected int height = 0;

protected int size = 0;

//constructor

public AVLTree2Node(E o)

{

//override the method

super(o);

}

}

}

//definition of "BST" class

class BST2<E extends Comparable<E>> implements Tree<E>

{

//declare the variables

protected TreeNode<E> root;

protected int size = 0;

//create a default binary tree

public BST2()

{

}

//create a binary tree from an array of objects

public BST2(E[] objects)

{

//check the condition

for (int i = 0; i < objects.length; i++)

{

//insert the values

insert(objects[i]);

}

}

@Override

//definition of "search" method

public boolean search(E e)

{

//start from the root

TreeNode<E> current = root;

//check the condition

while (current != null)

{

//check the condition

if (e.compareTo(current.element) < 0)

{

//set the value

current = current.left;

}

//check the condition

else if (e.compareTo(current.element) > 0)

{

//set the value

current = current.right;

}

//otherwise

else

{

//return statement

return true;

}

}

//return statement

return false;

}

@Override

//definition of "insert" method

public boolean insert(E e)

{

//check the condition

if (root == null)

{

//create a new root

root = createNewNode(e);

}

//otherwise

else

{

// locate the parent node

TreeNode<E> parent = null;

TreeNode<E> current = root;

//check the condition

while (current != null)

{

//check the condition

if (e.compareTo(current.element) < 0)

{

//set the value

parent = current;

current = current.left;

}

//check the condition

else if (e.compareTo(current.element) > 0)

{

//set the value

parent = current;

current = current.right;

}

else

{

//return statement

return false;

}

}

//check the condition

if (e.compareTo(parent.element) < 0)

{

//create a new node

parent.left = createNewNode(e);

}

else

{

//create a new node

parent.right = createNewNode(e);

}

}

//increment the size

size++;

//return statement

return true;

}

//definition of "createNewNode"

protected TreeNode<E> createNewNode(E e)

{

//return the statement

return new TreeNode<E>(e);

}

@Override

//definition of "inorder"

public void inorder()

{

//inorder traverse from the root

inorder(root);

}

//definition of inorder

protected void inorder(TreeNode<E> root)

{

//check the condition

if (root == null)

{

//return statement

return;

}

// inorder traversal from a subtree

inorder(root.left);

//display the element

System.out.print(root.element + " ");

// inorder traversal from a subtree

inorder(root.right);

}

@Override

// definition of "postoder"

public void postorder()

{

// postorder traversal from the root

postorder(root);

}

// definition of "postorder"

protected void postorder(TreeNode<E> root)

{

//check the condition

if (root == null)

{

//return statement

return;

}

//postorder traversal from a subtree

postorder(root.left);

postorder(root.right);

//display the element

System.out.print(root.element + " ");

}

@Override

//definition of "preorder"

public void preorder()

{

// preorder traversal from the root

preorder(root);

}

//definition of "preorder"

protected void preorder(TreeNode<E> root)

{

//check the condition

if (root == null)

{

//return statement

return;

}

//display the value

System.out.print(root.element + " ");

// preorder traversal from a subtree

preorder(root.left);

preorder(root.right);

}

//definition of "TreeNode" class

public static class TreeNode<E extends Comparable<E>>

{

//declare the variables

protected E element;

protected TreeNode<E> left;

protected TreeNode<E> right;

//definition of constructor

public TreeNode(E e)

{

//set the value

element = e;

}

}

@Override

// definition of "getSize" method

public int getSize()

{

//return statement

return size;

}

// definition of "getRoot" method

public TreeNode getRoot()

{

//return statement

return root;

}

// definition of method

public java.util.ArrayList<TreeNode<E>> path(E e)

{

//create an object

java.util.ArrayList<TreeNode<E>> list = new java.util.ArrayList<TreeNode<E>>();

// start from the root

TreeNode<E> current = root;

//check the condition

while (current != null)

{

//add the node to the list

list.add(current);

//check the condition

if (e.compareTo(current.element) < 0)

{

//set the value

current = current.left;

}

//check the condition

else if (e.compareTo(current.element) > 0)

{

//set the value

current = current.right;

}

else

//break statement

break;

}

//return statement

return list;

}

@Override

//definition of "delete" method

public boolean delete(E e)

{

// declare the variables

TreeNode<E> parent = null;

TreeNode<E> current = root;

//check the condition

while (current != null)

{

//check the condition

if (e.compareTo(current.element) < 0)

{

//set the value

parent = current;

current = current.left;

}

//check the condition

else if (e.compareTo(current.element) > 0)

{

//set the value

parent = current;

current = current.right;

}

else

//break statement

break;

}

//check the condition

if (current == null)

return false;

//check the condition

if (current.left == null)

{

//check the condition

if (parent == null)

{

//set the value

root = current.right;

}

else

{

//check the condition

if (e.compareTo(parent.element) < 0)

//set the value

parent.left = current.right;

else

//set the value

parent.right = current.right;

}

}

else

{

//set the value

TreeNode<E> parentOfRightMost = current;

TreeNode<E> rightMost = current.left;

//check the condition

while (rightMost.right != null)

{

//set the value

parentOfRightMost = rightMost;

rightMost = rightMost.right;

}

//set the value

current.element = rightMost.element;

//check the condition

if (parentOfRightMost.right == rightMost)

//set the value

parentOfRightMost.right = rightMost.left;

else

//set the value

parentOfRightMost.left = rightMost.left;

}

//decrement the "size"

size--;

//return statement

return true;

}

@Override

//definition of "inorderIterator"

public java.util.Iterator<E> iterator()

{

//return statement

return new InorderIterator();

}

// definition of class "InorderIterator"

class InorderIterator implements java.util.Iterator

{

// store the elements in a list

private java.util.ArrayList<E> list = new java.util.ArrayList<E>();

//declare the variable

private int current = 0;

//constructor

public InorderIterator()

{

//call the method

inorder();

}

//definition of inorder traversal from the root

private void inorder()

{

//call the method

inorder(root);

}

/*definition of inorder traversal from a subtree */

private void inorder(TreeNode<E> root)

{

//check the condition

if (root == null)

//return statement

return;

//call the method

inorder(root.left);

//add the value to the list

list.add(root.element);

//call the method

inorder(root.right);

}

//definition of "hasNext"

public boolean hasNext()

{

//check the condition

if (current < list.size())

//return statement

return true;

//return statement

return false;

}

//definition of "next" method

public Object next()

{

//return statement

return list.get(current++);

}

// definition of "remove" method

public void remove()

{

//delete the current element

delete(list.get(current));

// clear the list

list.clear();

// rebuild the list

inorder();

}

}

// definition of "clear" method

public void clear()

{

//set the values

root = null;

size = 0;

}

}

Sample Output

Enter 15 numbers: 3

5

1

8

4

7

12

10

9

6

11

14

0

15

2

Enter k: 4

The 4th smallest number is 3.0

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
# Print elements of all the Nodes of a binary tree using Post-order Traversal. Note: Please provide unique solution using PYTHON (without built-in function)
#Print elements of all the Nodes of a tree using In-order Traversal. Note: Use PYTHON to solve this and do not use any built-in function.
: Tl and T2 are two very large binary trees, with Tl much bigger than T2. Create analgorithm to determine ifT2 is a subtree of Tl.A tree T2 is a subtree of Tl if there exists a node n in Tl such that the subtree of n is identical to T2.That is, if you cut off the tree at node n, the two trees would be identica
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Database System Concepts
Computer Science
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:McGraw-Hill Education
Text book image
Starting Out with Python (4th Edition)
Computer Science
ISBN:9780134444321
Author:Tony Gaddis
Publisher:PEARSON
Text book image
Digital Fundamentals (11th Edition)
Computer Science
ISBN:9780132737968
Author:Thomas L. Floyd
Publisher:PEARSON
Text book image
C How to Program (8th Edition)
Computer Science
ISBN:9780133976892
Author:Paul J. Deitel, Harvey Deitel
Publisher:PEARSON
Text book image
Database Systems: Design, Implementation, & Manag...
Computer Science
ISBN:9781337627900
Author:Carlos Coronel, Steven Morris
Publisher:Cengage Learning
Text book image
Programmable Logic Controllers
Computer Science
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education