EBK PHYSICS FOR SCIENTISTS AND ENGINEER
9th Edition
ISBN: 9780100460300
Author: SERWAY
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 26, Problem 26.58AP
Two large, parallel metal plates, each of area A, are oriented horizontally and separated by a distance 3d. A grounded
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A parallel plate square capacitor with sides 10 cm in length are
separated by a 3.0 cm gap. The capacitor is connected to a 9.0 V
power supply. Once fully charged, the capacitor is disconnected
from the power supply. A dielectric, with dielectric constant K = 3.0
is inserted between the plates, filling the space between the plates.
What is the magnitude of electric field between the plates due solely
to the polarization of the dielectric, Edielectric?
A small ball with charge q = 4.3 μC and mass m = 0.045 kg is suspended from the ceiling by a string of length L = 2 m and is initially at rest. A uniform horizontal electric field E of magnitude 500 V/m is applied to the ball-string system. The ball then begins to move. Ignore air resistance.
a. Write an equation for the sum of forces in the direction of motion of the ball when it is at location C in terms of the given symbols. Take counterclockwise as positive.
b. What would be the expression for tan(α) using the symbols?
c. Find the value of α, in degrees.
Two concentric spherical conducting shells are separated by vacuum. The inner shell has total charge +Q
and radius a, and outer shell has charge -Q and radius b. Using integration of the electric field energy
density find the electric energy stored in the system. Take Q = 28 µC, a = 20 cm and b = 70 cm.
I
1
The energy, U₁ = 12.582440✔✔ Units J
The energy, U₁
a
=
=
Using the obtained energy and formula for the energy stored in a capacitor, U
capacitance of the system.
The capacitance, Co 3.1154528 X Units Select an answer ✓
Repeat the calculations for the same system with a dielectric material of k = 4.5 inserted in between the
shells.
The capacitance, C₁
=
-Q
Units Select an answer ✓
.37489732 X Units pF
Q²
20¹
find the
Chapter 26 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
Ch. 26 - A capacitor stores charge Q at a potential...Ch. 26 - Many computer keyboard buttons are constructed of...Ch. 26 - Two capacitors are identical. They can be...Ch. 26 - You have three capacitors and a battery. In which...Ch. 26 - If you have ever tried to hang a picture or a...Ch. 26 - A fully charged parallel-plate capacitor remains...Ch. 26 - By what factor is the capacitance of a metal...Ch. 26 - An electronics technician wishes to construct a...Ch. 26 - A parallel-plate capacitor is connected to a...Ch. 26 - If three unequal capacitors, initially uncharged,...
Ch. 26 - Assume a device is designed to obtain a large...Ch. 26 - (i) What happens to the magnitude of the charge...Ch. 26 - A capacitor with very large capacitance is in...Ch. 26 - A parallel-plate capacitor filled with air carries...Ch. 26 - (i) A battery is attached to several different...Ch. 26 - A parallel-plate capacitor is charged and then is...Ch. 26 - (i) Rank the following five capacitors from...Ch. 26 - True or False? (a) From the definition of...Ch. 26 - You charge a parallel-plate capacitor, remove it...Ch. 26 - (a) Why is it dangerous to touch the terminals of...Ch. 26 - Assume you want to increase the maximum operating...Ch. 26 - If you were asked to design a capacitor in which...Ch. 26 - Prob. 26.4CQCh. 26 - Explain why the work needed to move a particle...Ch. 26 - An air-filled capacitor is charged, then...Ch. 26 - The sum of the charges on both plates of a...Ch. 26 - Because the charges on the plates of a...Ch. 26 - (a) When a battery is connected to the plates of a...Ch. 26 - Two conductors having net charges of +10.0 C and...Ch. 26 - (a) How much charge is on each plate of a 4.00-F...Ch. 26 - An air-filled parallel-plate capacitor has plates...Ch. 26 - A 50.0-in length of coaxial cable has an inner...Ch. 26 - (a) Regarding (lie Earth and a cloud layer 800 m...Ch. 26 - When a potential difference of 150 V is applied to...Ch. 26 - Prob. 26.8PCh. 26 - An air-filled capacitor consists of two parallel...Ch. 26 - A variable air capacitor used in a radio tuning...Ch. 26 - An isolated, charged conducting sphere of radius...Ch. 26 - Review. A small object of mass m carries a charge...Ch. 26 - Two capacitors, C1 = 5.00 F and C2 = 12.0 F, are...Ch. 26 - What If? The two capacitors of Problem 13 (C1 =...Ch. 26 - Find the equivalent capacitance of a 4.20-F...Ch. 26 - Prob. 26.16PCh. 26 - According to its design specification, the timer...Ch. 26 - Why is the following situation impossible? A...Ch. 26 - For the system of four capacitors shown in Figure...Ch. 26 - Three capacitors are connected to a battery as...Ch. 26 - A group of identical capacitors is connected first...Ch. 26 - (a) Find the equivalent capacitance between points...Ch. 26 - Four capacitors are connected as shown in Figure...Ch. 26 - Consider the circuit shown in Figure P26.24, where...Ch. 26 - Find the equivalent capacitance between points a...Ch. 26 - Find (a) the equivalent capacitance of the...Ch. 26 - Two capacitors give an equivalent capacitance of...Ch. 26 - Two capacitors give an equivalent capacitance of...Ch. 26 - Consider three capacitors C1, C2. and C3 and a...Ch. 26 - The immediate cause of many deaths is ventricular...Ch. 26 - A 12.0-V battery is connected to a capacitor,...Ch. 26 - A 3.00-F capacitor is connected to a 12.0-V...Ch. 26 - As a person moves about in a dry environment,...Ch. 26 - Two capacitors, C1 = 18.0 F and C2 = 36.0 F, are...Ch. 26 - Two identical parallel-plate capacitors, each with...Ch. 26 - Two identical parallel-plate capacitors, each with...Ch. 26 - Two capacitors, C1 = 25.0 F and C2 = 5.00 F, are...Ch. 26 - A parallel-plate capacitor has a charge Q and...Ch. 26 - Review. A storm cloud and the ground represent the...Ch. 26 - Consider two conducting spheres with radii R1 and...Ch. 26 - Review. The circuit in Figure P26.41 (page 804)...Ch. 26 - A supermarket sells rolls of aluminum foil,...Ch. 26 - (a) How much charge can be placed 011 a capacitor...Ch. 26 - The voltage across an air-filled parallel-plate...Ch. 26 - Determine (a) the capacitance and (b) the maximum...Ch. 26 - A commercial capacitor is to be constructed as...Ch. 26 - A parallel-plate capacitor in air has a plate...Ch. 26 - Each capacitor in the combination shown in Figure...Ch. 26 - A 2.00-nF parallel-plate capacitor is charged to...Ch. 26 - A small rigid object carries positive and negative...Ch. 26 - An infinite line of positive charge lies along the...Ch. 26 - A small object with electric dipole moment p is...Ch. 26 - The general form of Gausss law describes how a...Ch. 26 - Find the equivalent capacitance of' the group of...Ch. 26 - Four parallel metal plates P1, P2, P3, and P4,...Ch. 26 - For (he system of four capacitors shown in Figure...Ch. 26 - A uniform electric field E = 3 000 V/m exists...Ch. 26 - Two large, parallel metal plates, each of area A,...Ch. 26 - A parallel-plate capacitor is constructed using a...Ch. 26 - Why is the following situation impossible? A...Ch. 26 - Prob. 26.61APCh. 26 - A parallel-plate capacitor with vacuum between its...Ch. 26 - A 10.0-F capacitor is charged to 15.0 V. It is...Ch. 26 - Assume that the internal diameter of the...Ch. 26 - Two square plates of sides are placed parallel to...Ch. 26 - (a) Two spheres have radii a and b, and their...Ch. 26 - A capacitor of unknown capacitance has been...Ch. 26 - A parallel-plate capacitor of plate separation d...Ch. 26 - Prob. 26.69APCh. 26 - Example 25.1 explored a cylindrical capacitor of...Ch. 26 - To repair a power supply for a stereo amplifier,...Ch. 26 - The inner conductor of a coaxial cable has a...Ch. 26 - Some physical systems possessing capacitance...Ch. 26 - Consider two long, parallel, and oppositely...Ch. 26 - Determine the equivalent capacitance of the...Ch. 26 - A parallel-plate capacitor with plates of area LW...Ch. 26 - Calculate the equivalent capacitance between...Ch. 26 - A capacitor is constructed from two square,...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two large, parallel metal plates, each of area A, are oriented horizontally and separated by a distance 3d. A grounded conducting wire joins them, and initially each plate carries no charge. Now a third identical plate carrying charge Q is inserted between the two plates, parallel to them and located a distance d from the upper plate as shown in Figure P20.84. (a) What induced charge appears on each of the two original plates? (b) What potential difference appears between the middle plate and each of the other plates? Figure P20.84arrow_forward(a) What is the final speed of an electron accelerated from rest through a voltage of 25.0 MV by a negatively charged Van de Graff terminal? (b) What is unreasonable about this result? (c) Which assumptions are responsible?arrow_forwardA thin conducing plate 2.0 m on a side is given a total charge of 10.0C . (a) What is the electric field 1.0 cm above the plate? (b) What is the force on an electron at this point? (c) Repeat these calculations for a point 2.0 cm above the plate. (d) When the electron moves from 1.0 to 2.0 cm above the plate, how much work is done on it by the electric field?arrow_forward
- A simple pendulum has a small sphere at its end with mass m and charge q. The pendulums rod has length L and its weight is negligible. The pendulum is placed in a uniform electric field of strength E directed vertically upward. What is the period of oscillation of the sphere if the electric force is less than the gravitational force on the sphere? Assume the oscillations are small. FIGURE P24.63arrow_forwardOne end of a light spring with force constant k = 125 N/m is attached to a wall, and the other end to a metal block with charge qA = 2.00 C on a horizontal, frictionless table (Fig. P23.34). A second block with charge qB = 3.60 C is brought close to the first block. The spring stretches as the blocks attract each other so that at equilibrium, the blocks are separated by a distance d = 12.0 cm. What is the displacement x of the spring? Figure P23.34arrow_forwardWhat is the electric field inside a 3.5 microF parallel plate capacitor when it is connected to a 12.0 V battery? The two plates are both 11.0 cm in diameter and 2.0 mm apart. SI base units.arrow_forward
- Flow cytometry, illustrated as shown, is a technique used to sort cells by type. The cells are placed in a conducting saline solution which is then forced from a nozzle. The stream breaks up into small droplets, each containing one cell. A metal collar surrounds the stream right at the point where the droplets separate from the stream. Charging the collar polarizes the conducting liquid, causing the droplets to become charged as they break off from the stream. A laser beam probes the solution just upstreamfrom the charging collar, looking for the presence of certain types of cells. All droplets containing one particular type of cell are given the same charge by the charging collar. Droplets with other desired types of cells receive a different charge, and droplets with no desired cell receive no charge. The charged droplets then pass between two parallel charged electrodes where they receive a horizontal force that directs them into different collection tubes, depending on their…arrow_forwardFlow cytometry, illustrated as shown, is a technique used to sort cells by type. The cells are placed in a conducting saline solution which is then forced from a nozzle. The stream breaks up into small droplets, each containing one cell. A metal collar surrounds the stream right at the point where the droplets separate from the stream. Charging the collar polarizes the conducting liquid, causing the droplets to become charged as they break off from the stream. A laser beam probes the solution just upstreamfrom the charging collar, looking for the presence of certain types of cells. All droplets containing one particular type of cell are given the same charge by the charging collar. Droplets with other desired types of cells receive a different charge, and droplets with no desired cell receive no charge. The charged droplets then pass between two parallel charged electrodes where they receive a horizontal force that directs them into different collection tubes, depending on their…arrow_forwardFlow cytometry, illustrated as shown, is a technique used to sort cells by type. The cells are placed in a conducting saline solution which is then forced from a nozzle. The stream breaks up into small droplets, each containing one cell. A metal collar surrounds the stream right at the point where the droplets separate from the stream. Charging the collar polarizes the conducting liquid, causing the droplets to become charged as they break off from the stream. A laser beam probes the solution just upstreamfrom the charging collar, looking for the presence of certain types of cells. All droplets containing one particular type of cell are given the same charge by the charging collar. Droplets with other desired types of cells receive a different charge, and droplets with no desired cell receive no charge. The charged droplets then pass between two parallel charged electrodes where they receive a horizontal force that directs them into different collection tubes, depending on their…arrow_forward
- A small object with mass m, charge q, and initial speed v0= 6.00×103 m/s is projected into a uniform electric field between two parallel metal plates of length 26.0 cm (Figure 1). The electric field between the plates is directed downward and has magnitude E = 600 N/C . Assume that the field is zero outside the region between the plates. The separation between the plates is large enough for the object to pass between the plates without hitting the lower plate. After passing through the field region, the object is deflected downward a vertical distance d = 1.35 cm from its original direction of motion and reaches a collecting plate that is 56.0 cm from the edge of the parallel plates. Ignore gravity and air resistance. (A) Calculate the object's charge-to-mass ratio, q/m. Express your answer in coulombs per kilogram.arrow_forwardA small ball with charge q = 12.8 μC and mass m = 0.065 kg is suspended from the ceiling by a string of length L = 2 m and is initially at rest. A uniform horizontal electric field E of magnitude 500 V/m is applied to the ball-string system. The ball then begins to move. Ignore air resistance. a)Suppose point B is the highest point the ball can reach. Take θ as the angle of the string with the vertical direction at point B. Enter an expression for the change of gravitational potential energy ΔUg from point A to point B in terms of the symbols given. b) Enter an expression for the change of the electrical potential energy ΔUe from point A to point B in terms of the symbols given.arrow_forwardThe plates of a parallel-plate capacitor are 3.50 mmmm apart, and each carries a charge of magnitude 75.0 nCnC. The plates are in vacuum. The electric field between the plates has a magnitude of 5.00×106 V/mV/m. What is the area of each plate? Express your answer in meters squared.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY