
Concept explainers
Two capacitors, C1 = 18.0 μF and C2 = 36.0 μF, are connected in series, and a 12.0-V battery is connected across the two capacitors. Find (a) the equivalent capacitance and (b) the energy stored in this equivalent capacitance. (c) Find the energy stored in each individual capacitor. (d) Show that the sum of these two energies is the same as the energy found in part (b). (e) Will this equality always be true, or docs it depend on the number of capacitors and their capacitances? (f) If the same capacitors were connected in parallel, what potential difference would be required across them so that the combination stores the same energy as in part (a)? (g) Which capacitor stores more energy in this situation, C1 or C2?
(a)

Answer to Problem 26.34P
Explanation of Solution
Given information: The value of capacitor 1 is
Explanation:
The capacitors
Formula to calculate the equivalent capacitance of the system when they are connected in series.
Here,
Substitute
Thus, the equivalent capacitance of the system is
Conclusion:
Therefore, the equivalent capacitance of the system is
(b)

Answer to Problem 26.34P
Explanation of Solution
Given information: The value of capacitor 1 is
Explanation:
Formula to calculate the energy stored in this equivalent capacitance.
Here,
Substitute
Thus, the energy stored in this equivalent capacitance is
Conclusion:
Therefore, the energy stored in this equivalent capacitance is
(c)

Answer to Problem 26.34P
Explanation of Solution
Given information: The value of capacitor 1 is
Explanation:
In series connection, the charge will be same in capactor 1 and capacitor 2,
It is given that the total voltage of the battery is
Write the expression to calculate the voltage across capacitor 1.
Substitute
Substitute
Thus, the voltage across capacitor 2 is
Substitute
Thus, the voltage across capacitor 1 is
Formula to calculate the energy stored in the capacitor 1.
Here,
Substitute
Thus, the energy stored in the capacitor 1 is
Formula to calculate the energy stored in the capacitor 2.
Here,
Substitute
Thus, the energy stored in the capacitor 2 is
Conclusion:
Therefore, the energy stored in the capacitor 1 is
(d)

To show: The sum of these two energies is the same as the energy found in part (b).
Answer to Problem 26.34P
Explanation of Solution
Given information: The value of capacitor 1 is
Explanation:
The energy stored in this equivalent capacitance is
The energy stored in the capacitor 1 is
The energy stored in the capacitor 2 is
Formula to calculate the sum of these two energies.
Here,
Substitute
Thus, the sum of these two energies is the same as the energy found in part (b).
Conclusion:
Therefore, the sum of these two energies is the same as the energy found in part (b) is
(e)

Answer to Problem 26.34P
Explanation of Solution
Given information: The value of capacitor 1 is
Explanation:
Formula to calculate the energy stored by the capacitor in series.
Here,
Formula to calculate the energy stored by the capacitor in parallel.
Here,
The value of the energy stored by the capacitor in series and the energy stored by the capacitor in parallel are equal so, this equality will always be true.
Thus, this equality will always be true because the energy stored in series and parallel for the capacitors is same.
Conclusion:
Therefore, this equality will always be true because the energy stored in series and parallel for the capacitors is same.
(f)

Answer to Problem 26.34P
Explanation of Solution
Given information: The value of capacitor 1 is
Explanation:
If the same capacitors are connected in parallel.
Formula to calculate the equivalent capacitance of the system when they are connected in parallel.
Here,
The energy stored in this equivalent capacitance is
Formula to calculate the required potential difference across them so that the combination stores the same energy as in part (b).
Substitute
Substitute
Thus, the required potential difference across them so that the combination stores the same energy as in part (b) is
Conclusion:
Therefore, the required potential difference across them so that the combination stores the same energy as in part (b) is
(g)

Answer to Problem 26.34P
Explanation of Solution
Given information: The value of capacitor 1 is
Explanation:
The capacitor
Thus, the capacitor
Conclusion:
Therefore, the capacitor
Want to see more full solutions like this?
Chapter 26 Solutions
Physics for Scientists and Engineers
- please answer this asap!!!!arrow_forwardRT = 4.7E-30 18V IT = 2.3E-3A+ 12 38Ω ли 56Ω ли r5 27Ω ли r3 28Ω r4 > 75Ω r6 600 0.343V 75.8A Now figure out how much current in going through the r4 resistor. |4 = unit And then use that current to find the voltage drop across the r resistor. V4 = unitarrow_forward7 Find the volume inside the cone z² = x²+y², above the (x, y) plane, and between the spheres x²+y²+z² = 1 and x² + y²+z² = 4. Hint: use spherical polar coordinates.arrow_forward
- ганм Two long, straight wires are oriented perpendicular to the page, as shown in the figure(Figure 1). The current in one wire is I₁ = 3.0 A, pointing into the page, and the current in the other wire is 12 4.0 A, pointing out of the page. = Find the magnitude and direction of the net magnetic field at point P. Express your answer using two significant figures. VO ΜΕ ΑΣΦ ? Figure P 5.0 cm 5.0 cm ₁ = 3.0 A 12 = 4.0 A B: μΤ You have already submitted this answer. Enter a new answer. No credit lost. Try again. Submit Previous Answers Request Answer 1 of 1 Part B X Express your answer using two significant figures. ΜΕ ΑΣΦ 0 = 0 ? below the dashed line to the right P You have already submitted this answer. Enter a new answer. No credit lost. Try again.arrow_forwardAn infinitely long conducting cylindrical rod with a positive charge λ per unit length is surrounded by a conducting cylindrical shell (which is also infinitely long) with a charge per unit length of −2λ and radius r1, as shown in the figure. What is σinner, the surface charge density (charge per unit area) on the inner surface of the conducting shell? What is σouter, the surface charge density on the outside of the conducting shell? (Recall from the problem statement that the conducting shell has a total charge per unit length given by −2λ.)arrow_forwardA small conducting spherical shell with inner radius aa and outer radius b is concentric with a larger conducting spherical shell with inner radius c and outer radius d (Figure 1). The inner shell has total charge +2q, and the outer shell has charge −2q. What's the total charge on the inner surface of the small shell? What's the total charge on the outer surface of the small shell? What's the total charge on the inner surface of the large shell? What's the total charge on the outer surface of the large shell?arrow_forward
- A small conducting spherical shell with inner radius a and outer radius b is concentric with a larger conducting spherical shell with inner radius cc and outer radius d (Figure 1). The inner shell has total charge +2q, and the outer shell has charge −2q. What is the direction of the electric field for b<r<c? Calculate the magnitude of the electric field for c<r<d. Calculate the magnitude of the electric field for r>d.arrow_forwardTICE D Conservation of Momentum 1. A 63.0 kg astronaut is on a spacewalk when the tether line to the shuttle breaks. The astronaut is able to throw a spare 10.0 kg oxygen tank in a direction away from the shuttle with a speed of 12.0 m/s, propelling the astronaut back to the shuttle. Assuming that the astronaut starts from rest with respect to the shuttle, find the astronaut's final speed with respect to the shuttle after the tank is thrown. 2. An 85.0 kg fisherman jumps from a dock into a 135.0 kg rowboat at rest on the west side of the dock. If the velocity of the fisherman is 4.30 m/s to the west as he leaves the dock, what is the final velocity of the fisher- man and the boat? 3. Each croquet ball in a set has a mass of 0.50 kg. The green ball, traveling at 12.0 m/s, strikes the blue ball, which is at rest. Assuming that the balls slide on a frictionless surface and all collisions are head-on, find the final speed of the blue ball in each of the following situations: a. The green…arrow_forwardThe 5.15 A current through a 1.50 H inductor is dissipated by a 2.15 Q resistor in a circuit like that in the figure below with the switch in position 2. 0.632/ C A L (a) 0.368/ 0+ 0 = L/R 2T 3r 4 (b) (a) What is the initial energy (in J) in the inductor? 0 t = L/R 2t (c) Эт 4t 19.89 ] (b) How long will it take (in s) the current to decline to 5.00% of its initial value? 2.09 S (c) Calculate the average power (in W) dissipated, and compare it with the initial power dissipated by the resistor. 28.5 1.96 x W X (ratio of initial power to average power)arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





