(a)
Interpretation:
The resolution for species B and C from the given data should be determined.
Concept introduction:
The resolution of the column is defined as the separation of two species of the column.

Answer to Problem 26.16QAP
The resolution is
Explanation of Solution
Given:
The expression of resolution of the column is:
Here, the retention time of species
Substitute
Thus, the resolution is
(b)
Interpretation:
The selectivity factor for species B and C from the given data should be determined.
Concept introduction:
The resolution of the column is defined as the separation of two species of the column.

Answer to Problem 26.16QAP
The selectivity factor is
Explanation of Solution
The expression of selectivity factor is:
Here, the non-retained retention time is
Substitute
Thus, the selectivity factor is
(c)
Interpretation:
The length of column necessary to separate B and C species with a resolution of
Concept introduction:
The resolution of the column is defined as the separation of two species of the column.

Answer to Problem 26.16QAP
The length of column necessary to separate the two species with a resolution of
Explanation of Solution
The expression of length of the column is:
Here, the number of plates needed to separate the two species is
The expression of relation of the resolution and number of plates is:
Here, the number of plates needed is
Substitute
Substitute
Thus, the length of column necessary to separate the two species with a resolution of
(d)
Interpretation:
The time required to separate B and C species on the column of part c should be determined.
Concept introduction:
The resolution of the column is defined as the separation of two species of the column.

Answer to Problem 26.16QAP
The time required to separate the two species on the column of part c is
Explanation of Solution
The expression of the relation of time required to separate the two species on the column is:
Here, the given resolution is
Substitute
Thus, the time required to separate the two species on the column of part c is
Want to see more full solutions like this?
Chapter 26 Solutions
PRINCIPLES OF INSTRUMENTAL ANALYSIS
- What is the missing reactant R in this organic reaction? ་ ་ ་ ་ ་ ་ ་ ་ ་ ་ +R H3O+ • Draw the structure of R in the drawing area below. N • Be sure to use wedge and dash bonds if it's necessary to draw one particular enantiomer. Click and drag to start drawing a structure.arrow_forwardWrite the systematic name of each organic molecule: H structure H OH OH H OH name ☐ OHarrow_forwardDetermine whether each of the following molecules is a hemiacetal, acetal, or neither and select the appropriate box in the table. CH3O OH OH OH hemiacetal acetal neither hemiacetal acetal neither Xarrow_forward
- What is the missing reactant R in this organic reaction? N N དལ་ད་་ + R • Draw the structure of R in the drawing area below. • Be sure to use wedge and dash bonds if it's necessary to draw one particular enantiomer. Click and drag to start drawing a structure. ㄖˋarrow_forwardDraw the condensed structure of 4-hydroxy-3-methylbutanal. Click anywhere to draw the first atom of your structure.arrow_forwardUsing the bond energy values, calculate the energy that must be supplied or is released upon the polymerization of 755 monomers. If energy must be supplied, provide a positive number; if energy is released, provide a negative number. Hint: Avogadro’s number is 6.02 × 1023.arrow_forward
- -AG|F=2E|V 3. Before proceeding with this problem you may want to glance at p. 466 of your textbook where various oxo-phosphorus derivatives and their oxidation states are summarized. Shown below are Latimer diagrams for phosphorus at pH values at 0 and 14: Acidic solution -0.93 +0.38 -0.51 -0.06 H3PO4 →H4P206 H3PO3 H3PO2 → P→ PH3 -0.28 -0.50 → -0.50 Basic solution 3-1.12 -1.57 -2.05 -0.89 PO HPO →→H2PO2 P PH3 -1.73 a) Under acidic conditions, H3PO4 can be reduced into H3PO3 directly (-0.28V), or via the formation and reduction of H4P2O6 (-0.93/+0.38V). Calculate the values of AG's for both processes; comment. (3 points) 0.5 PH, 0.0 -0.5- 2 3 9 3 -1.5 -2.0 Pa H,PO H,PO H,PO -3 -1 0 2 4 Oxidation state, N 2 b) Frost diagram for phosphorus under acidic conditions is shown. Identify possible disproportionation and comproportionation processes; write out chemical equations describing them. (2 points) c) Elemental phosphorus tends to disproportionate under basic conditions. Use data in…arrow_forwardThese two reactions appear to start with the same starting materials but result in different products. How do the chemicals know which product to form? Are both products formed, or is there some information missing that will direct them a particular way?arrow_forwardWhat would be the best choices for the missing reagents 1 and 3 in this synthesis? 1. PPh3 3 1 2 2. n-BuLi • Draw the missing reagents in the drawing area below. You can draw them in any arrangement you like. • Do not draw the missing reagent 2. If you draw 1 correctly, we'll know what it is. • Note: if one of your reagents needs to contain a halogen, use bromine. Explanation Check Click and drag to start drawing a structure. 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Priva ×arrow_forward
- Predict the products of this organic reaction: Explanation Check IN NaBH3CN H+ ? Click and drag to start drawing a structure. D 5 C +arrow_forwardPredict the products of this organic reaction: H3O+ + ? • Draw all the reasonable products in the drawing area below. If there are no products, because no reaction will occur, check the box under the drawing area. • Include both major and minor products, if some of the products will be more common than others. • Be sure to use wedge and dash bonds if you need to distinguish between enantiomers. No reaction. Click and drag to start drawing a structure. dmarrow_forwardIarrow_forward
- Principles of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
