
Elementary Surveying: An Introduction to Geomatics Plus Mastering Engineering with Pearson eText -- Access Card Package (15th Edition)
15th Edition
ISBN: 9780134654171
Author: Charles D. Ghilani
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 26, Problem 26.10P
To determine
Tabulate cut, fill and cumulative volumes in cubic yards between stations
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
The beam shown in the figure below has continuous lateral support of both flanges. The uniform load is a service load
consisting of 70% dead load and 30% live load. The dead load includes the weight of the beam.
6 k/ft
+9
18'
If A992 steel is used, is a W12 × 35 adequate?
For A992 steel: Fy
=
50 ksi.
bf
h
For W12 x 35:
= 6.31,
=
36.2 in., Zx
2tf
tw
(Express your answers to three significant figures.)
a. Use LRFD.
Mu
Фомп
=
ft-kips
ft-kips
A W12 × 35 is -Select-
b. Use ASD.
Ma
=
ft-kips
Mn
ft-kips
26
A W12 × 35 is -Select-
=
+6→
51.2 in.
3
Verify the value of Zx for a W10 × 30 that is tabulated in the dimensions and properties tables in Part 1 of the
Manual.
For W10 × 30: Ag
Use the table below.
-
8.84 in.2, d 10.5 in.
AISC Manual Label y (in.)
WT 9 × 25
2.12
WT 8 × 25
1.89
WT 7 × 24
1.35
WT 6 × 25
1.17
WT 5 × 15
1.10
(Express your answer to three significant figures.)
Zx
=
3
in.
determine the horizontal displacement of joint A of the truss. Each member has a cross sectional area of A=300mm2, E=200GPa. Use the method of virtual work and show all working
Chapter 26 Solutions
Elementary Surveying: An Introduction to Geomatics Plus Mastering Engineering with Pearson eText -- Access Card Package (15th Edition)
Ch. 26 - Prob. 26.1PCh. 26 - Prob. 26.2PCh. 26 - Prob. 26.3PCh. 26 - Prob. 26.4PCh. 26 - Prob. 26.5PCh. 26 - Prob. 26.6PCh. 26 - Prob. 26.7PCh. 26 - Prob. 26.8PCh. 26 - Prob. 26.9PCh. 26 - Prob. 26.10P
Ch. 26 - Prob. 26.11PCh. 26 - Prob. 26.12PCh. 26 - Prob. 26.13PCh. 26 - Prob. 26.14PCh. 26 - Prob. 26.15PCh. 26 - Prob. 26.16PCh. 26 - Prob. 26.17PCh. 26 - Prob. 26.18PCh. 26 - Prob. 26.19PCh. 26 - Prob. 26.20PCh. 26 - Prob. 26.21PCh. 26 - Prob. 26.22PCh. 26 - Prob. 26.23PCh. 26 - Prob. 26.24PCh. 26 - Prob. 26.25PCh. 26 - Prob. 26.26PCh. 26 - Prob. 26.27PCh. 26 - Prob. 26.28P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- For the frame shown below, determine the vertical displacement at C. Assume that flexural rigidities AB and BC segments are EI and 2EI, respectively. Use the method of virtual work and show all working.arrow_forwardDETERMINE THE BEARINGS OF THE POLYGON/TRAVERSEarrow_forward54 7h de зк +F B + 8 8 Ө 6 A=Sin² E=290ooks for diagonal members A= 30.25in² E = 1800 ksi for hoizontal & Vertical members For Primary Structure revive roller@c, make Da roller and cut BF For redundant structures Redundant " " 2 склес しん Ik @D 3 14 @ BF しん ↑arrow_forward
- A3.2- The 4.5m long cantilever beam is subjected to the specified uniformly distributed dead load 7.0 kN/m (including self-weight) and to the specified uniformly distributed live load 8.0 kN/m. The beam is made of normal density concrete containing maximum 20mm aggregate size with f'c = 25 MPa. Design the shear reinforcement for the beam using U-stirrups and fy = 400 MPa. Figure 2 WDL = 7.0 kN/m WLL=8.0 kN/m 4.5 m 450 mm' 380 mm *250 mm 3-30M Cross-sectionarrow_forwardA3.1- A simply supported beam is subjected to factored concentrated load of 400 kN at mid-span. The beam has a 10m span and a rectangular cross-section with bw = 350mm, effective depth d = 520mm, and total height h = 620mm. a) Ignor the self-weight of the beam and design the required shear reinforcement for the beam. Use 10M U-stirrups. b) Sketch the beam elevation and show the stirrups. Given: The beam is reinforced with 5-25M longitudinal bars f'c = 30 MPa fy = 400 MPa Maximum aggregate size: 20mm Figure 1 P= 400 kN k 5.0 m + 5.0 m 620 mm 520 mm 350 mm + Cross-sectionarrow_forward+ 54 7h de зк +F 8 B 8 Ө 6 For Primary Structure remove and cut BF For redundant structures Redundant " " 2 склес しん Ik @D 3 14 @ BF しん ↑ A=Sin² E=290ooks for diagonal members A= 30.25in² E = 1800 ksi for hoizontal & Vertical members roller@G, make Da rollerarrow_forward
- An urban freeway is to be designed using the following information. AADT = 52,600 veh/day K (proportion of AADT occurring during the peak hour): D (proportion of peak hour traffic traveling in the peak direction): Trucks: 0.11 0.65 8% of peak hour volume PHF = 0.94 Lane width: Shoulder width: Total ramp density: Terrain: 12 ft 10 ft 0.5 interchange/mile; all interchanges are to be cloverleaf interchanges rolling Determine the number of lanes in the peak direction required to provide LOS C. (Assume commuter traffic and assume no RVs.) lanes Show all calculations required. (Calculate your answers for the peak direction only. Enter fy the peak hour volume in veh/h, the free flow speed in mi/h, the demand flow rate in pc/h/In, the mean speed in mi/h, and the density in pc/mi/In.) fHV peak hour volume free flow speed demand flow rate mean speed veh/h mi/h pc/h/In mi/h density pc/mi/Inarrow_forwardThe beam shown in the figure below is a W16 × 31 of A992 steel and has continuous lateral support. The two concentrated loads are service live loads. Neglect the weight of the beam and determine whether the beam is adequate. Suppose that P = 56 k. For W16 x 31: d=15.9 in., t = 0.275 in., h/t = 51.6, and M = M₁ = 203 ft-kip, M/ P P = = Mp/ =135 ft-kip. 6' W16 x 31 a. Use LRFD. Calculate the required moment strength, the allowable shear strength, and the maximum shear. (Express your answers to three significant figures.) = Mu QvVn Vu = = Beam is -Select- b. Use ASD. ft-kip kips kips Calculate the required moment strength, the allowable shear strength, and the maximum shear. (Express your answers to three significant figures.) Ma = Vn/b Va = = Beam is -Select- ft-kip kips kipsarrow_forward***Please answer all parts. They are part of a single question and not different questions altogether. I will like the solution as well. Thank you!arrow_forward
- Consider the geometric and traffic characteristics shown below. Approach (Width) Peak hour Approach Volumes: Left Turn Through Movement Right Turn Conflicting Pedestrian Volumes PHF For the following saturation flows: North (56 ft) South (56 ft) East (68 ft) West (68 ft) 165 105 200 166 442 395 585 538 162 157 191 200 900 1,200 1,200 900 0.95 0.95 0.95 0.95 Through lanes: 1,600 veh/h/in Through-right lanes: 1,400 veh/h/in Left lanes: 1,000 veh/h/in Left-through lanes: 1,200 veh/h/in Left-through-right lanes: 1,100 veh/h/in The total cycle length was 277 s. Now assume the saturation flow rates are 10% higher, that is, assume the following saturation flow rates: Through lanes: Through-right lanes: Left lanes: Left-through lanes: Left-through-right lanes: 1,760 veh/h/in 1,540 veh/h/in 1,100 veh/h/in 1,320 veh/h/in 1,210 veh/h/in Determine a suitable signal phasing system and phase lengths (in s) for the intersection using the Webster method. (Enter the sum of green and yellow times for…arrow_forwardDetermine the minimum of the appropriate yellow interval (Y . approach speed limit: 45 mi/h approach grade: 3.2% downgrade assumed perception-reaction time: 1.0 sec assumed deceleration rate: 11.2 ft/sec² assumed average vehicle length: 20 ft width of intersection to be crossed: 56 ft min' in s) for a signal phase under the following conditions.arrow_forwardCompute the nominal shear strength of an M10 × 7.5 of A572 Grade 60 steel (Fy = 60 ksi). For M10 × 7.5: d = 9.99 in., tw = 0.13 in., h/tw Vn = x kips = 71.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Structural Analysis (10th Edition)Civil EngineeringISBN:9780134610672Author:Russell C. HibbelerPublisher:PEARSONPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Fundamentals of Structural AnalysisCivil EngineeringISBN:9780073398006Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel LanningPublisher:McGraw-Hill EducationTraffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning


Structural Analysis (10th Edition)
Civil Engineering
ISBN:9780134610672
Author:Russell C. Hibbeler
Publisher:PEARSON

Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning

Fundamentals of Structural Analysis
Civil Engineering
ISBN:9780073398006
Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:McGraw-Hill Education


Traffic and Highway Engineering
Civil Engineering
ISBN:9781305156241
Author:Garber, Nicholas J.
Publisher:Cengage Learning