Concept explainers
(a)
Find the addition of the given expression with same unit.
![Check Mark](/static/check-mark.png)
Answer to Problem 21A
Explanation of Solution
Given:
The given addition is,
Calculation:
Given:
Add the numerical values and leave the units unchanged.
Arrange like units in the same column and add each column.
Simplify the sum. Divide
Now,
Add :
Hence the solution is,
(b)
Find the subtraction of the given expression with same unit.
![Check Mark](/static/check-mark.png)
Answer to Problem 21A
Explanation of Solution
Given:
The given addition is,
Calculation:
Given:
subtract the numerical values and leave the units unchanged.
Arrange like units in the same column and add each column.
Hence the solution is,
(c)
Find the multiplicationof the given expression with same unit.
![Check Mark](/static/check-mark.png)
Answer to Problem 21A
Explanation of Solution
Given:
The given addition is,
Calculation:
Given:
Multiply the numerical values and leave the units unchanged.
Simplify the product.
Now the product is,
Hence the solution is,
(d)
Find the division of the given expression with same unit.
![Check Mark](/static/check-mark.png)
Answer to Problem 21A
Explanation of Solution
Given:
The given addition is,
Calculation:
Given:
Divide the numerical values and leave the units unchanged.
Divide
Express the
Add
Divide
Collect quotient.
Hence the solution is,
Want to see more full solutions like this?
Chapter 26 Solutions
EBK MATHEMATICS FOR MACHINE TECHNOLOGY
- Question 1. Let f: XY and g: Y Z be two functions. Prove that (1) if go f is injective, then f is injective; (2) if go f is surjective, then g is surjective. Question 2. Prove or disprove: (1) The set X = {k € Z} is countable. (2) The set X = {k EZ,nЄN} is countable. (3) The set X = R\Q = {x ER2 countable. Q} (the set of all irrational numbers) is (4) The set X = {p.√2pQ} is countable. (5) The interval X = [0,1] is countable. Question 3. Let X = {f|f: N→ N}, the set of all functions from N to N. Prove that X is uncountable. Extra practice (not to be submitted). Question. Prove the following by induction. (1) For any nЄN, 1+3+5++2n-1 n². (2) For any nЄ N, 1+2+3++ n = n(n+1). Question. Write explicitly a function f: Nx N N which is bijective.arrow_forward3. Suppose P is the orthogonal projection onto a subspace E, and Q is the orthogonal projection onto the orthogonal complement E. (a) The combinations of projections P+Q and PQ correspond to well-known oper- ators. What are they? Justify your answer. (b) Show that P - Q is its own inverse.arrow_forwardDetermine the moment about the origin O of the force F4i-3j+5k that acts at a Point A. Assume that the position vector of A is (a) r =2i+3j-4k, (b) r=-8i+6j-10k, (c) r=8i-6j+5karrow_forward
- Given r = e−p2−q2, p = es, q = e−s, find dr/dsarrow_forwardAssignment Brief: 1. Use the trapezium rule with five ordinates (four strips) to find an approximation to giving your answer to 2 decimal places. 1 dx x³ +3arrow_forwardIf 50 is 10% of 500 lanterns, what percent is 100 out of 500 lanterns?arrow_forward
- what is 4m-1? m=3arrow_forwardCalculs Insights πT | cos x |³ dx 59 2arrow_forward2. Consider the ODE u' = ƒ (u) = u² + r where r is a parameter that can take the values r = −1, −0.5, -0.1, 0.1. For each value of r: (a) Sketch ƒ(u) = u² + r and determine the equilibrium points. (b) Draw the phase line. (d) Determine the stability of the equilibrium points. (d) Plot the direction field and some sample solutions,i.e., u(t) (e) Describe how location of the equilibrium points and their stability change as you increase the parameter r. (f) Using the matlab program phaseline.m generate a solution for each value of r and the initial condition u(0) = 0.9. Print and turn in your result for r = −1. Do not forget to add a figure caption. (g) In the matlab program phaseline.m set the initial condition to u(0) = 1.1 and simulate the ode over the time interval t = [0, 10] for different values of r. What happens? Why? You do not need to turn in a plot for (g), just describe what happens.arrow_forward
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillElementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGAL
- Mathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,Algebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal Littell
![Text book image](https://www.bartleby.com/isbn_cover_images/9780079039897/9780079039897_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337614085/9781337614085_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780547587776/9780547587776_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780395977224/9780395977224_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168994/9781938168994_smallCoverImage.gif)