
Concept explainers
Explain how voltage is induced in a permanent magnet pickup coil as the reluctor approaches alignment with the pickup coil.

The way in which the voltage is induced in a permanent magnet pickup coil as the reluctor approaches alignment with the pickup coil.
Answer to Problem 1SA
As the reluctor approaches alignment with the pickup coil, its tooth gets aligned with the core of pickup coil and repels the magnetic field. Hence the magnetic field is forced to flow through the coil and pickup core. As the tooth passes the core, the magnetic field lines get expanded. This action is repeated every time the tooth passes through the core. The moving lines of magnetic force cut across the coil windings and induce a voltage signal.
Explanation of Solution
A permanent magnet pickup coil consists of a permanent magnet with fine wire wound around it. The reluctor is attached to a rotating shaft or cable and there are a number of teeth on it depending on the application. An air gap is maintained between the reluctor and the pickup coil.
As the reluctor rotates in front of the pickup coil, its tooth gets aligned with the core of pickup coil and repels the magnetic field. Hence, the magnetic field is forced to flow through the coil and pickup core.
As the tooth passes the core, the magnetic field lines get extended. This action is repeated every time the tooth passes through the core. The moving lines of magnetic force cut across the coil windings and induce a voltage signal.
Conclusion:
Thus, as the reluctor approaches alignment with the pickup coil, its tooth gets aligned with the core of pickup coil and repels the magnetic field. Hence the magnetic field is forced to flow through the coil and pickup core. As the tooth passes the core, the magnetic field lines are able to expand. This action is repeated every time the tooth passes through the core. The moving lines of magnetic force cut across the coil windings and induce a voltage signal.
Want to see more full solutions like this?
Chapter 26 Solutions
Automotive Technology
- Auto Controls Hand sketch the root Focus of the following transfer function How many asymptotes are there ?what are the angles of the asymptotes?Does the system remain stable for all values of K NO COPIED SOLUTIONSarrow_forward-400" 150" in Datum 80" 90" -280"arrow_forwardUsing hand drawing both of themarrow_forward
- A 10-kg box is pulled along P,Na rough surface by a force P, as shown in thefigure. The pulling force linearly increaseswith time, while the particle is motionless att = 0s untilit reaches a maximum force of100 Nattimet = 4s. If the ground has staticand kinetic friction coefficients of u, = 0.6 andHU, = 0.4 respectively, determine the velocityof the A 1 0 - kg box is pulled along P , N a rough surface by a force P , as shown in the figure. The pulling force linearly increases with time, while the particle is motionless at t = 0 s untilit reaches a maximum force of 1 0 0 Nattimet = 4 s . If the ground has static and kinetic friction coefficients of u , = 0 . 6 and HU , = 0 . 4 respectively, determine the velocity of the particle att = 4 s .arrow_forwardCalculate the speed of the driven member with the following conditions: Diameter of the motor pulley: 4 in Diameter of the driven pulley: 12 in Speed of the motor pulley: 1800 rpmarrow_forward4. In the figure, shaft A made of AISI 1010 hot-rolled steel, is welded to a fixed support and is subjected to loading by equal and opposite Forces F via shaft B. Stress concentration factors K₁ (1.7) and Kts (1.6) are induced by the 3mm fillet. Notch sensitivities are q₁=0.9 and qts=1. The length of shaft A from the fixed support to the connection at shaft B is 1m. The load F cycles from 0.5 to 2kN and a static load P is 100N. For shaft A, find the factor of safety (for infinite life) using the modified Goodman fatigue failure criterion. 3 mm fillet Shaft A 20 mm 25 mm Shaft B 25 mmarrow_forward
- Automotive Technology: A Systems Approach (MindTa...Mechanical EngineeringISBN:9781133612315Author:Jack Erjavec, Rob ThompsonPublisher:Cengage LearningElectrical Transformers and Rotating MachinesMechanical EngineeringISBN:9781305494817Author:Stephen L. HermanPublisher:Cengage LearningRefrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage Learning
- Understanding Motor ControlsMechanical EngineeringISBN:9781337798686Author:Stephen L. HermanPublisher:Delmar Cengage Learning



