COLLEGE PHYSICS
2nd Edition
ISBN: 9781464196393
Author: Freedman
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 26, Problem 19QAP
To determine
Which option is correct, an ideal blackbody is an object that
A. absorbs most of the energy that strikes it and emits a little of the energy it absorbs.
B. absorbs a little of the energy that strikes it and emits most of the energy it absorbs.
C. absorbs half of the energy that strikes it and emits half of the energy it absorbs.
D. absorbs all the energy that strikes it and emits all the energy it absorbs.
E. neither absorbs nor emits energy except at ultraviolet ("black light") wavelengths.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
3. Dimensional analysis can provide insight into Stefan-Boltzmann's law for
the radiation from a black body. According to this law the intensity of
radiation, in units of J s- m-2, from a body at temperature T is
S Physics: Section 50-4 | Sch x S Physics AB - Final review X S Physics: Section 50-4 | Sch x
← →
aldine.schoology.com/assignment/5938514670/assessment
AldinelSD.org Bookmarks G Google Image Resu...
Gi have one in spanis....
S Solving Absolute V...
10
D
Miles away from home
9.
8-
24
1
A
B
C
0
8:00
9:00
10:00
Time
miles.
The total distance travelled by the object is
The net displacement (Ax) of the object is
Displacement (Ax) of the object between 8:00 and 9:30 is
Displacement (Ax) of the object between 8:00 and 12:30 is
Word Bank:
11:00
Login
Home | Schoology
12:00
miles.
E
13:00
miles.
miles.
Physics chapter 6 Flashcar X +
Q
*
X
⠀
Reading list
4. Assuming a filament in a 100 W light bulb acts as a perfect blackbody (e = 1).
what is the temperature of the hottest portion of the filament if it has a surface
area of 6.3 105 m²? The Stefan-Boltzmann constant is 5.67 x 10-8 J/(s. m².
K*).
a) 130.8 K
b) 1100.21 K
c) 2300.21 K
d) 5800.5 K
5. During an evening news broadcast in Helsinki, Finland, the meteorologist
indicated that the day's lowest temperature was -6.0 °C. The corresponding
value of this temperature on the Fahrenheit scale is ........
a) -7.2 °F
b) 4.0 °F
c) 21.2 °F
d) 25.5 °F
Chapter 26 Solutions
COLLEGE PHYSICS
Ch. 26 - Prob. 1QAPCh. 26 - Prob. 2QAPCh. 26 - Prob. 3QAPCh. 26 - Prob. 4QAPCh. 26 - Prob. 5QAPCh. 26 - Prob. 6QAPCh. 26 - Prob. 7QAPCh. 26 - Prob. 8QAPCh. 26 - Prob. 9QAPCh. 26 - Prob. 10QAP
Ch. 26 - Prob. 11QAPCh. 26 - Prob. 12QAPCh. 26 - Prob. 13QAPCh. 26 - Prob. 14QAPCh. 26 - Prob. 15QAPCh. 26 - Prob. 16QAPCh. 26 - Prob. 17QAPCh. 26 - Prob. 18QAPCh. 26 - Prob. 19QAPCh. 26 - Prob. 20QAPCh. 26 - Prob. 21QAPCh. 26 - Prob. 22QAPCh. 26 - Prob. 23QAPCh. 26 - Prob. 24QAPCh. 26 - Prob. 25QAPCh. 26 - Prob. 26QAPCh. 26 - Prob. 27QAPCh. 26 - Prob. 28QAPCh. 26 - Prob. 29QAPCh. 26 - Prob. 30QAPCh. 26 - Prob. 31QAPCh. 26 - Prob. 32QAPCh. 26 - Prob. 33QAPCh. 26 - Prob. 34QAPCh. 26 - Prob. 35QAPCh. 26 - Prob. 36QAPCh. 26 - Prob. 37QAPCh. 26 - Prob. 38QAPCh. 26 - Prob. 39QAPCh. 26 - Prob. 40QAPCh. 26 - Prob. 41QAPCh. 26 - Prob. 42QAPCh. 26 - Prob. 43QAPCh. 26 - Prob. 44QAPCh. 26 - Prob. 45QAPCh. 26 - Prob. 46QAPCh. 26 - Prob. 47QAPCh. 26 - Prob. 48QAPCh. 26 - Prob. 49QAPCh. 26 - Prob. 50QAPCh. 26 - Prob. 51QAPCh. 26 - Prob. 52QAPCh. 26 - Prob. 53QAPCh. 26 - Prob. 54QAPCh. 26 - Prob. 55QAPCh. 26 - Prob. 56QAPCh. 26 - Prob. 57QAPCh. 26 - Prob. 58QAPCh. 26 - Prob. 59QAPCh. 26 - Prob. 60QAPCh. 26 - Prob. 61QAPCh. 26 - Prob. 62QAPCh. 26 - Prob. 63QAPCh. 26 - Prob. 64QAPCh. 26 - Prob. 65QAPCh. 26 - Prob. 66QAPCh. 26 - Prob. 67QAPCh. 26 - Prob. 68QAPCh. 26 - Prob. 69QAPCh. 26 - Prob. 70QAPCh. 26 - Prob. 71QAPCh. 26 - Prob. 72QAPCh. 26 - Prob. 73QAPCh. 26 - Prob. 74QAPCh. 26 - Prob. 75QAPCh. 26 - Prob. 76QAPCh. 26 - Prob. 77QAPCh. 26 - Prob. 78QAPCh. 26 - Prob. 79QAPCh. 26 - Prob. 80QAPCh. 26 - Prob. 81QAPCh. 26 - Prob. 82QAPCh. 26 - Prob. 83QAPCh. 26 - Prob. 84QAPCh. 26 - Prob. 85QAPCh. 26 - Prob. 86QAPCh. 26 - Prob. 87QAPCh. 26 - Prob. 88QAPCh. 26 - Prob. 89QAPCh. 26 - Prob. 90QAPCh. 26 - Prob. 91QAPCh. 26 - Prob. 92QAPCh. 26 - Prob. 93QAPCh. 26 - Prob. 94QAPCh. 26 - Prob. 95QAPCh. 26 - Prob. 96QAPCh. 26 - Prob. 97QAPCh. 26 - Prob. 98QAPCh. 26 - Prob. 99QAPCh. 26 - Prob. 100QAPCh. 26 - Prob. 101QAPCh. 26 - Prob. 102QAPCh. 26 - Prob. 103QAPCh. 26 - Prob. 104QAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A furnace emits radiation at 2000 K. Treating it as black body radiation, calculate the wavelength at which the emission is maximum. a.) 1.449 x 10 ^ -6 m b.) 2.449 x 10 ^ -6 m c.) 3.449 x 10 ^ -6 m d.) 4.449 x10 ^ -6 marrow_forwardThe maximum intensity of radiation emitted by a star occurs at a surface temperature of 4.3 x 104 K. a) Calculate the wavelength of the emitted radiation when the intensity is maximum. b) Calculate the ratio of the intensity radiated at a wavelength of 60.0 nm to the maximum intensity. Assume that the star radiates like an ideal blackbody.arrow_forwardAn object at an initial temperature of 27 degrees C is raised to a temperature of 877 degrees C. How much more energy does the object emit as blackbody radiation at the higher temperature compared to the lower temperature? a. 32.5 b. 215.9 c. 864.5 d. 1,113,123arrow_forward
- Q4: Quantum chemistryarrow_forwardWhich should I choose and whyarrow_forward3. Dimensional analysis can provide insight into Stefan-Boltzmann's law for the radiation from a black body. According to this law the intensity of radiation, in units of J s-' m-², from a body at temperature Tis 1 = GT*, where e is Stefan-Boltzmann's constant. Because black-body radiation can be considered to be a gas of photons, i.e. quantum particles which move with velocity e with typical energies of the order of kT, the intensity I is a function of h, c and kT. Use dimensional analysis to confirm that Iis proportional to 7 and find the dependence of a on h and c.arrow_forward
- The Sun has a temperature of approximately 5800 K. a) What is the peak wavelength of light emitted by the Sun? b) How much energy does one photon of this wavelength have? c) How much power is emitted by the Sun if it has an emissivity of 0.9? (The Sun has a radius of 6.96x10^8 m.) d) How much mass is converted to energy every second in the Sun's core to drive its power emission? Please write your answers in the space below and email your work. For the toolbar, press ALT+F10 (PC) or ALT+FN+F10 (Mac).arrow_forward2. Can we Estimate the Solar Constant? A result from theoretical physics, known as the Stefan-Boltzmann law, states that the total power radiated by a blackbody at temperature T (K) per unit surface area is given by E=GT* where E is radiated power per unit surface area of the blackbody and o is the Stefan-Boltzmann constant equal to 5.67 x 10* Wm?K*. Let's assume that the sun is a perfect blackbody at T= 5783 K and apply the laws of energy conservation to estimate the average incidence of solar energy [W/m] arriving at the top of Earth's atmosphere (we call that incident energy the solar constant). Compare your calculated estimate of the solar constant to that commonly used to model the sun. Assuming the following constants: d = 1.39e9 m=Diameter of the sun de = 1.27e7 m = Diameter of the earth Res = 1.49el1 m = Mean earth-to-sun distance (HINT: use this distance as the radius of a sphere centered on the sun).arrow_forwardProblem-1: An asteroid is hurtling toward earth at 150,000“. The temperature of the asteroid is about 100 K, meaning that its peak emission is 2 = 29 µm. The speed of light is c = 3E[8]. a) What is the wavelength of light that we receive from the asteroid? (Answer: 2.89855E[-05] m)arrow_forward
- An atom is moving through space at a constant speed. Which of the following COULD NOT be the atom's speed? Choose all that apply. 1.84c Co.52c Do.19c 3.17c 2.7c 4.08€ 1.9c 2.6carrow_forwardIn the photoelectric effect experiment, what type of energy process is occurring? O A. Kinetic energy is transformed into thermal energy. O B. Radiant energy is transformed into potential energy. O C. Radiant energy is transformed into kinetic energy. O D. Electromagnetic energy is transformed into thermal energy. 9:44 PM 10:10 PM Aarrow_forwardW | File 70 Paste 14+1+13+1+12+|+11·10 ·9·1·8·1·7·1·6·1·5·1·4·1·3·1·2·1·1····1·1·20 Home Document1 - Microsoft Word (Product Activation Failed) Insert Page Layout References Review View T Calibri (Body) 14 T Α Α΄ B-B-S ## T AaBbCcDc AaBbCcDc AaBbC AaBbCc AaBl AaBbCcl BIU abe X, X² A ab T 트플 1 Normal No Spaci... Heading 1 Heading 2 Title Subtitle Font Paragraph G Styles ·2·1·1·····1·1·2·1·3·1·4·1·5·1· 6 · 1 · 7 · 1 · 8 · 1 ·9·1·10·1·11·1·12·1·13· |·14·1·15· |· · |·17· 1 · 18 · | I I I I I ATOMIC AND NUCLEAR PHYSICS PLEASE ANSWER ALL QUESTIONS The motion of two interacting particles (atoms or nuclei) can be described by the following radial Schrödigner equation d l(l 1) −2² [12 a (rªd) – (C,+¹) + V(r)]Re(k;r) = ERe(k;r). 2μ dr where Re(r) is the radial wave function, μ = 2, the reduced mass, V the interacting potential, my+m₂ E the total energy, and k the wave number, given by k = 2μE h² 2. Using Re(k,r) = u₂(k,r) kr show that the above Schrödigner equation reduces to l(l + 1)_24² ď² +…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning