
(a)
The length measured in the rest frame of the particle, if the length of the field between goal lines in the earth frame is
(a)

Answer to Problem 15P
The length measured in the rest frame of the particle is
Explanation of Solution
Since the length of the field between the goal lines in the rest frame of earth is
Write the expression for the length of field between the goal lines as measured in the rest frame of particle.
Here,
Write the expression for the Lorentz factor.
Here,
Substitute
Conclusion:
Substitute
Therefore, the length measured in the rest frame of the particle is
(b)
The time the particle takes to go from one goal line to the other according to Earth observers.
(b)

Answer to Problem 15P
The time the particle takes to go from one goal line to the other according to Earth observers is
Explanation of Solution
The speed of the particle is constant with respect to earth. Thus, the time can be found using the equation
Write the expression for the time taken by the particle to move from one goal line to another relative to earth observer.
Substitute
Conclusion:
Substitute
Therefore, the time the particle takes to go from one goal line to the other with respect to Earth observers is
(c)
The time the particle takes to go from one goal line to the other in the rest frame of the particle.
(c)

Answer to Problem 15P
The time the particle takes to go from one goal line to the other in the rest frame of the particle is
Explanation of Solution
In rest frame of the particle, the distance travelled is
Write the expression for the time required to travel between goal lines in the rest frame of the particle.
Here,
Conclusion:
Substitute
Substitute
Therefore, the time the particle takes to go from one goal line to the other with respect to rest frame of the particle is
Want to see more full solutions like this?
Chapter 26 Solutions
Physics
- A capacitor with a capacitance of C = 5.95×10−5 F is charged by connecting it to a 12.5 −V battery. The capacitor is then disconnected from the battery and connected across an inductor with an inductance of L = 1.55 H . At the time 2.35×10−2 s after the connection to the inductor is made, what is the current in the inductor? At that time, how much electrical energy is stored in the inductor?arrow_forwardCan someone help me with this question. Thanks.arrow_forwardCan someone help me with this question. Thanks.arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON





