
College Physics
10th Edition
ISBN: 9781285761954
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 25, Problem 8P
A certain camera lens has a focal length of 175 mm. Its position can be adjusted to produce images when the lens is between 180. mm and 210. mm from the plane of the film. Over what range of object distances is the lens useful?
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
10. Imagine you have a system in which you have 54 grams of ice. You can melt this
ice and then vaporize it all at 0 C. The melting and vaporization are done reversibly
into a balloon held at a pressure of 0.250 bar. Here are some facts about water you
may wish to know. The density of liquid water at 0 C is 1 g/cm³. The density of ice at 0
C is 0.917 g/cm³. The enthalpy of vaporization of liquid water is 2.496 kJ/gram and the
enthalpy of fusion of solid water is 333.55 J/gram.
A. How much energy does the ice absorb as heat when it melts?
B. How much work is involved in melting the ice?
C. What is the total change in energy for melting the ice?
D. What is the enthalpy change for melting the ice?
E. What is the entropy change for melting the ice?
F. What is the change in Helmholtz energy for melting the ice?
G. What is the change in Gibbs energy for melting the ice?
In the figure Q = 5.7 nC and all other quantities are accurate to 2 significant figures. What is the magnitude of the force on the charge Q? (k = 1/4πε 0 = 8.99 × 109 N · m2/C2)
Now add a fourth charged particle, particle 3, with positive charge q3, fixed in the yz-plane at (0,d2,d2). What is the net force F→ on particle 0 due solely to this charge? Express your answer (a vector) using k, q0, q3, d2, i^, j^, and k^. Include only the force caused by particle 3.
Chapter 25 Solutions
College Physics
Ch. 25.2 - Two campers wish to start a fire during the day....Ch. 25.6 - Suppose you are observing a binary star with a...Ch. 25 - A lens is used to examine an object across a room....Ch. 25 - A CCD camera is equipped with a lens with constant...Ch. 25 - The optic nerve and the brain invert the image...Ch. 25 - Suppose you are observing the interference pattern...Ch. 25 - If you want to examine the fine detail of an...Ch. 25 - Compare and contrast the eye and a camera. What...Ch. 25 - Choose the option from each pair that makes the...Ch. 25 - Choose the option from each pair that makes the...
Ch. 25 - Explain why it is theoretically impossible to see...Ch. 25 - Large telescopes are usually reflecting rather...Ch. 25 - A patient has a near point of 1.25 m. Is she...Ch. 25 - A lens with a certain power is used as a simple...Ch. 25 - Suppose a microscopes resolution is diffraction...Ch. 25 - During LASIK eye surgery (laser-assisted in situ...Ch. 25 - If you increase the aperture diameter of a camera...Ch. 25 - A lens has a focal length of 28 cm and a diameter...Ch. 25 - A certain camera has f-numbers that range from 1.2...Ch. 25 - An f/2.80 CCD camera has a 105-mm focal length...Ch. 25 - A digital camera equipped with an f = 50.0-mm lens...Ch. 25 - A camera is being used with a correct exposure at...Ch. 25 - (a) Use conceptual arguments to show that the...Ch. 25 - A certain type of film requires an exposure time...Ch. 25 - A certain camera lens has a focal length of 175...Ch. 25 - The near point of a persons eye is 60.0 cm. To see...Ch. 25 - A patient cant see objects closer than 40.0 cm and...Ch. 25 - The accommodation limits for Nearsighted Nicks...Ch. 25 - Prob. 12PCh. 25 - An individual is nearsighted; his near point is...Ch. 25 - A particular nearsighted patient cant see objects...Ch. 25 - A particular patients eyes are unable to focus on...Ch. 25 - A patient has a near point of 45.0 cm and far...Ch. 25 - Prob. 17PCh. 25 - Prob. 18PCh. 25 - Prob. 19PCh. 25 - A person sees clearly wearing eyeglasses that have...Ch. 25 - A stamp collector uses a lens with 7.5-cm focal...Ch. 25 - When a drop of water is placed on a flat, clear...Ch. 25 - A biology student uses a simple magnifier to...Ch. 25 - A jewelers lens of focal length 5.0 cm is used as...Ch. 25 - A leaf of length h is positioned 71.0 cm in front...Ch. 25 - (a) What is the maximum angular magnification of...Ch. 25 - The desired overall magnification of a compound...Ch. 25 - Prob. 28PCh. 25 - Prob. 29PCh. 25 - A microscope has an objective lens with a focal...Ch. 25 - The two lenses of a compound microscope are...Ch. 25 - Prob. 32PCh. 25 - Prob. 33PCh. 25 - Prob. 34PCh. 25 - Suppose an astronomical telescope is being...Ch. 25 - Prob. 36PCh. 25 - Prob. 37PCh. 25 - An elderly sailor is shipwrecked on a desert...Ch. 25 - Prob. 39PCh. 25 - Prob. 40PCh. 25 - A converging lens with a diameter of 30.0 cm forms...Ch. 25 - Prob. 42PCh. 25 - Prob. 43PCh. 25 - (a) Calculate the limiting angle of resolution for...Ch. 25 - Prob. 45PCh. 25 - Prob. 46PCh. 25 - Prob. 47PCh. 25 - A spy satellite circles Earth at an altitude of...Ch. 25 - A diffraction grating has a second-order resolving...Ch. 25 - Prob. 50PCh. 25 - Prob. 51PCh. 25 - Monochromatic light is beamed into a Michelson...Ch. 25 - Light of wavelength 550. nm is used to calibrate a...Ch. 25 - Prob. 54PCh. 25 - An interferometer is used to measure the length of...Ch. 25 - The Michelson interferometer can be used to...Ch. 25 - A thin sheet of transparent material has an index...Ch. 25 - Prob. 58APCh. 25 - Prob. 59APCh. 25 - A person with a nearsighted eye has near and far...Ch. 25 - An American standard analog television picture...Ch. 25 - Prob. 62APCh. 25 - The near point of an eye is 75.0 cm. (a) What...Ch. 25 - Prob. 64APCh. 25 - A cataract-impaired lens in an eye may be...Ch. 25 - A laboratory (astronomical) telescope is used to...Ch. 25 - Prob. 67AP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- For a tornadoes and hurricanes, which of the following is most critical? an alert a watch a warning a predictionarrow_forwardWhen a warm front advances up and over a cold front, what is it called? front inversion stationary front cold front occlusion warm front occlusionarrow_forward1) Consider two positively charged particles, one of charge q0 (particle 0) fixed at the origin, and another of charge q1 (particle 1) fixed on the y-axis at (0,d1,0). What is the net force F→ on particle 0 due to particle 1? Express your answer (a vector) using any or all of k, q0, q1, d1, i^, j^, and k^. 2) Now add a third, negatively charged, particle, whose charge is −q2− (particle 2). Particle 2 fixed on the y-axis at position (0,d2,0). What is the new net force on particle 0, from particle 1 and particle 2? Express your answer (a vector) using any or all of k, q0, q1, q2, d1, d2, i^, j^, and k^. 3) Particle 0 experiences a repulsion from particle 1 and an attraction toward particle 2. For certain values of d1 and d2, the repulsion and attraction should balance each other, resulting in no net force. For what ratio d1/d2 is there no net force on particle 0? Express your answer in terms of any or all of the following variables: k, q0, q1, q2.arrow_forward
- A 85 turn, 10.0 cm diameter coil rotates at an angular velocity of 8.00 rad/s in a 1.35 T field, starting with the normal of the plane of the coil perpendicular to the field. Assume that the positive max emf is reached first. (a) What (in V) is the peak emf? 7.17 V (b) At what time (in s) is the peak emf first reached? 0.196 S (c) At what time (in s) is the emf first at its most negative? 0.589 x s (d) What is the period (in s) of the AC voltage output? 0.785 Sarrow_forwardA bobsled starts at the top of a track as human runners sprint from rest and then jump into the sled. Assume they reach 40 km/h from rest after covering a distance of 50 m over flat ice. a. How much work do they do on themselves and the sled which they are pushing given the fact that there are two men of combined mass 185 kg and the sled with a mass of 200 kg? (If you haven't seen bobsledding, watch youtube to understand better what's going on.) b. After this start, the team races down the track and descends vertically by 200 m. At the finish line the sled crosses with a speed of 55 m/s. How much energy was lost to drag and friction along the way down after the men were in the sled?arrow_forwardFor what type of force is it not possible to define a potential energy expression?arrow_forward
- 10. Imagine you have a system in which you have 54 grams of ice. You can melt this ice and then vaporize it all at 0 C. The melting and vaporization are done reversibly into a balloon held at a pressure of 0.250 bar. Here are some facts about water you may wish to know. The density of liquid water at 0 C is 1 g/cm³. The density of ice at 0 C is 0.917 g/cm³. The enthalpy of vaporization of liquid water is 2.496 kJ/gram and the enthalpy of fusion of solid water is 333.55 J/gram.arrow_forwardConsider 1 mole of supercooled water at -10°C. Calculate the entropy change of the water when the supercooled water freezes at -10°C and 1 atm. Useful data: Cp (ice) = 38 J mol-1 K-1 Cp (water) 75J mol −1 K -1 Afus H (0°C) 6026 J mol −1 Assume Cp (ice) and Cp (water) to be independent of temperature.arrow_forwardThe molar enthalpy of vaporization of benzene at its normal boiling point (80.09°C) is 30.72 kJ/mol. Assuming that AvapH and AvapS stay constant at their values at 80.09°C, calculate the value of AvapG at 75.0°C, 80.09°C, and 85.0°C. Hint: Remember that the liquid and vapor phases will be in equilibrium at the normal boiling point.arrow_forward
- 3. The entropy of an ideal gas is S = Nkg In V. Entropy is a state function rather than a path function, and in this problem, you will show an example of the entropy change for an ideal gas being the same when you go between the same two states by two different pathways. A. Express ASV = S2 (V2) - S₁(V1), the change in entropy upon changing the volume from V₁to V2, at fixed particle number N and energy, U. B. Express ASN = S₂(N₂) - S₁ (N₁), the change in entropy upon changing the particle number from N₁ to N2, at fixed volume V and energy U. C. Write an expression for the entropy change, AS, for a two-step process (V₁, N₁) → (V2, N₁) → (V2, N₂) in which the volume changes first at fixed particle number, then the particle number changes at fixed volume. Again, assume energy is constant.arrow_forwardPlease don't use Chatgpt will upvote and give handwritten solutionarrow_forward6. We used the constant volume heat capacity, Cv, when we talked about thermodynamic cycles. It acts as a proportionality constant between energy and temperature: dU = C₁dT. You can also define a heat capacity for constant pressure processes, Cp. You can think of enthalpy playing a similar role to energy, but for constant pressure processes δαρ C = (37) - Sup Ср ат P = ат Starting from the definition of enthalpy, H = U + PV, find the relationship between Cy and Cp for an ideal gas.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College


Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY