PHYSICS
PHYSICS
5th Edition
ISBN: 2818440038631
Author: GIAMBATTISTA
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 25, Problem 86P
To determine

The sketch of the grating spectra with its labels.

Expert Solution & Answer
Check Mark

Answer to Problem 86P

The diffraction spectra is given in figure 1.

Explanation of Solution

The wavelength of the red light is 690nm, wavelength of the blue light is 460nm, the grating-screen distance is 2.0m and the slit density is 10000.0slits/cm.

Write the expression for slit separation

    d=1dn                                                                                                    (I)

Here, dn is the slit density and d is the slit separation.

Substitute 10000.0slits/cm for dn in (I) to find d

  d=110000.0slits/cm=110000.0slits/cm1021cm=1.00000×106m

Write the expression for diffraction maxima

  dsinθ=mλ

Here, λ is the wavelength, m is the order of the fringe and θ is the angular spacing for fringes.

Rearrange for θ

    θ=sin1(mλd)                                                                                       (II)

Write the expression for θ

  tanθ=ΔxD

Here, Δx is the distance from the central fringe and D is the grating-screen distance.

Rearrange for Δx

  Δx=Dtanθ                                                                                          (III)

Substitute (II) in (III)

  Δx=Dtan(sin1(mλd))                                                                       (IV)

Substitute 0 for m, 2.0m for D, 690nm for λ and 1.00000×106m for d in (IV) to find Δx for central red fringe.

  Δx=690nmtan(sin10×690nm1.00000×106m)=0

Substitute ±1 for m, 2.0m for D, 690nm for λ and 1.00000×106m for d in (IV) to find Δx for first order red light.

  Δx=690nmtan(sin1(±1)690nm1.00000×106m)=690nmtan(sin1(±1)690×109m1.00000×106m)=±1.9nm

Substitute 0 for m, 2.0m for D, 460nm for λ and 1.00000×106m for d in (IV) to find Δx for central blue fringe.

  Δx=460nmtan(sin10×690nm1.00000×106m)=0

Substitute ±1 for m, 2.0m for D, 460nm for λ and 1.00000×106m for d in (IV) to find Δx for first order blue light.

  Δx=460nmtan(sin1(±1)690nm1.00000×106m)=460nmtan(sin1(±1)690×109m1.00000×106m)=±1.0m

Substitute ±2 for m, 2.0m for D, 460nm for λ and 1.00000×106m for d in (IV) to find Δx for second order blue light.

  Δx=460nmtan(sin1(±2)690nm1.00000×106m)=460nmtan(sin1(±2)690×109m1.00000×106m)=±4.7m

The blue light and red light overlap for the central fringe and hence it appears purple.

The grating spectra drawn using the above information is given below:

PHYSICS, Chapter 25, Problem 86P

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
What is the error determined by the 2/3 rule?
Your colleague gives you a sample that are supposed to consist of Pt-Ni nanoparticles, TiO2 nanorod arrays, and SiO2 monolith plates (see right panel schematic). The bimetallic Pt-Ni nanoparticles are expected to decorate on the side surfaces of the aligned TiO2 nanorod arrays. These aligned TiO2 nanoarrays grew on the flat SiO2 monolith. Let's assume that the sizes of the Pt-Ni nanoparticles are > 10 nm. We further assume that you have access to a modern SEM that can produce a probe size as small as 1 nm with a current as high as 1 nA. You are not expected to damage/destroy the sample. Hint: keep your answers concise and to the point. TiO₂ Nanorods SiO, monolith a) What do you plan to do if your colleague wants to know if the Pt and Ni formed uniform alloy nanoparticles? (5 points) b) If your colleague wants to know the spatial distribution of the PtNi nanoparticles with respect to the TiO2 nanoarrays, how do you accomplish such a goal? (5 points) c) Based on the experimental results…
Find the current in 5.00 and 7.00 Ω resistors. Please explain all reasoning

Chapter 25 Solutions

PHYSICS

Ch. 25.7 - Prob. 25.8PPCh. 25.8 - Prob. 25.9PPCh. 25 - Prob. 1CQCh. 25 - Prob. 2CQCh. 25 - Prob. 3CQCh. 25 - Prob. 4CQCh. 25 - Prob. 5CQCh. 25 - Prob. 6CQCh. 25 - Prob. 7CQCh. 25 - Prob. 8CQCh. 25 - Prob. 9CQCh. 25 - Prob. 10CQCh. 25 - Prob. 11CQCh. 25 - 12. In Section 25.3 we studied interference due to...Ch. 25 - Prob. 13CQCh. 25 - Prob. 14CQCh. 25 - Prob. 15CQCh. 25 - Prob. 16CQCh. 25 - Prob. 17CQCh. 25 - Prob. 18CQCh. 25 - Prob. 19CQCh. 25 - Prob. 20CQCh. 25 - Prob. 21CQCh. 25 - Prob. 1MCQCh. 25 - Prob. 2MCQCh. 25 - Prob. 3MCQCh. 25 - Prob. 4MCQCh. 25 - Prob. 5MCQCh. 25 - Prob. 6MCQCh. 25 - 7. Coherent light of a single frequency passes...Ch. 25 - Prob. 8MCQCh. 25 - Prob. 9MCQCh. 25 - Prob. 10MCQCh. 25 - Prob. 1PCh. 25 - Prob. 2PCh. 25 - Prob. 3PCh. 25 - Prob. 4PCh. 25 - Prob. 5PCh. 25 - Prob. 6PCh. 25 - Prob. 7PCh. 25 - Prob. 8PCh. 25 - Prob. 9PCh. 25 - Prob. 10PCh. 25 - Prob. 11PCh. 25 - Prob. 12PCh. 25 - Prob. 13PCh. 25 - Prob. 14PCh. 25 - Prob. 15PCh. 25 - 16. A transparent film (n = 1.3) is deposited on a...Ch. 25 - 17. A camera lens (n = 1.50) is coated with a thin...Ch. 25 - 18. A soap film has an index of refraction n =...Ch. 25 - Prob. 19PCh. 25 - Prob. 20PCh. 25 - Prob. 21PCh. 25 - Prob. 22PCh. 25 - Prob. 23PCh. 25 - Prob. 24PCh. 25 - Prob. 25PCh. 25 - Prob. 26PCh. 25 - Prob. 27PCh. 25 - Prob. 36PCh. 25 - Prob. 28PCh. 25 - Prob. 32PCh. 25 - Prob. 29PCh. 25 - Prob. 30PCh. 25 - Prob. 31PCh. 25 - Prob. 34PCh. 25 - Prob. 33PCh. 25 - Prob. 35PCh. 25 - Prob. 37PCh. 25 - Prob. 38PCh. 25 - Prob. 39PCh. 25 - Prob. 40PCh. 25 - Prob. 41PCh. 25 - Prob. 42PCh. 25 - Prob. 43PCh. 25 - 44. ✦ White light containing wavelengths from 400...Ch. 25 - Prob. 45PCh. 25 - Prob. 46PCh. 25 - 47. The central bright fringe in a single-slit...Ch. 25 - Prob. 48PCh. 25 - Prob. 49PCh. 25 - Prob. 50PCh. 25 - Prob. 51PCh. 25 - Prob. 52PCh. 25 - Prob. 53PCh. 25 - Prob. 54PCh. 25 - Prob. 55PCh. 25 - Prob. 56PCh. 25 - Prob. 57PCh. 25 - Prob. 58PCh. 25 - Prob. 60PCh. 25 - Prob. 61PCh. 25 - Prob. 59PCh. 25 - Prob. 62PCh. 25 - 63. ✦ If you shine a laser with a small aperture...Ch. 25 - Prob. 64PCh. 25 - Prob. 65PCh. 25 - Prob. 66PCh. 25 - Prob. 67PCh. 25 - Prob. 68PCh. 25 - Prob. 69PCh. 25 - 70. Coherent green light with a wavelength of 520...Ch. 25 - Prob. 71PCh. 25 - Prob. 72PCh. 25 - Prob. 73PCh. 25 - Prob. 74PCh. 25 - Prob. 75PCh. 25 - Prob. 76PCh. 25 - Prob. 77PCh. 25 - Prob. 78PCh. 25 - Prob. 91PCh. 25 - Prob. 79PCh. 25 - Prob. 80PCh. 25 - Prob. 81PCh. 25 - Prob. 82PCh. 25 - Prob. 83PCh. 25 - Prob. 84PCh. 25 - Prob. 85PCh. 25 - Prob. 86PCh. 25 - Prob. 87PCh. 25 - Prob. 88PCh. 25 - Prob. 89PCh. 25 - Prob. 90PCh. 25 - Prob. 93PCh. 25 - Prob. 92PCh. 25 - Prob. 94PCh. 25 - Prob. 95PCh. 25 - Prob. 96PCh. 25 - Prob. 97P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY