Physics (5th Edition)
5th Edition
ISBN: 9780321976444
Author: James S. Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2.5, Problem 5EYU
The equation of motion for an object moving with constant acceleration is x = 6 m − (5 m/s)t + (4 m/s2)t2. (a) What is the position of this object at t = 0? (b) What is the velocity of this object at t = 0? (c) What is the acceleration of this object?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
a particle moves in one dimension, and its position as a function of time is given by x = (1.9m/s)t + (-2.6 m/s^2)t^2
what is the particles average velocity from t = 0.45 s to t = 0.55 s?
what is the particles average velocity from t = 0.49 s to t = 0.51 s?
A particle moves along the x axis according to the equation
x = 1.90 + 3.02t − 1.00t2, where x is in meters and t is in seconds.
(a) Find the position of the particle at t = 2.50 s.
in m(b) Find its velocity at t = 2.50 s.
in m/s(c) Find its acceleration at t = 2.50 s.in m/s2
The motion of 3 particle is defined by the refation x = 5t4 ~ 4t3 +3t ~ 2, where x and t are expressed in feet and seconds, respectively. Determine the position, the velocity, and the acceleration of the particle when t= 2.
Chapter 2 Solutions
Physics (5th Edition)
Ch. 2.1 - For each of the following questions, give an...Ch. 2.2 - The position of an object as a function of time is...Ch. 2.3 - Figure 2-10 shows the position-versus-time graph...Ch. 2.4 - At a certain time, object 1 has an initial...Ch. 2.5 - The equation of motion for an object moving with...Ch. 2.6 - A submerged alligator swims directly toward two...Ch. 2.7 - On a distant, airless planet, an astronaut drops a...Ch. 2 - You take your dog on a walk to a nearby park. On...Ch. 2 - Does an odometer in a car measure distance or...Ch. 2 - An astronaut orbits Earth in the space shuttle. In...
Ch. 2 - After a tennis match the players dash to the net...Ch. 2 - Does a speedometer measure speed or velocity?...Ch. 2 - Is it possible for a car to circle a racetrack...Ch. 2 - For what kinds of motion are the instantaneous and...Ch. 2 - Assume that the brakes in your car create a...Ch. 2 - The velocity of an object is zero at a given...Ch. 2 - If the velocity of an object is nonzero, can its...Ch. 2 - Is it possible for an object to have zero average...Ch. 2 - A batter hits a pop fly straight up. (a) Is the...Ch. 2 - A person on a trampoline bounces straight upward...Ch. 2 - A volcano shoots a lava bomb straight upward. Does...Ch. 2 - Referring to Figure 2-27, you walk from your home...Ch. 2 - In Figure 2-27, you walk from the park to your...Ch. 2 - The two tennis players shown in Figure 2-28 walk...Ch. 2 - The golfer in Figure 2-29 sinks the ball in two...Ch. 2 - A jogger runs on the track shown in Figure 2-30....Ch. 2 - Predict/Calculate A child rides a pony on a...Ch. 2 - Predict/Explain You drive your car in a straight...Ch. 2 - Predict/Explain You drive your car in a straight...Ch. 2 - Usain Bolt of Jamaica set a world record in 2009...Ch. 2 - BIO Kangaroos have been clocked at speeds of 65...Ch. 2 - Rubber Ducks A severe storm on January 10, 1992,...Ch. 2 - Radio waves travel at the speed of light,...Ch. 2 - It was a dark and stormy night, when suddenly you...Ch. 2 - BIO Nerve Impulses The human nervous system can...Ch. 2 - A finch rides on the back of a Galapagos tortoise,...Ch. 2 - You jog at 9.1 km/h for 5.0 km, then you jump into...Ch. 2 - A dog runs back and forth between its two owners,...Ch. 2 - BIO Predict/Calculate Blood flows through a major...Ch. 2 - BIO Predict/Calculate Blood flows through a major...Ch. 2 - In heavy rush-hour traffic you drive in a straight...Ch. 2 - Predict/Calculate An expectant father paces back...Ch. 2 - The position of a particle as a function of time...Ch. 2 - The position of a particle as a function of time...Ch. 2 - Predict/Calculate A tennis player moves back and...Ch. 2 - On your wedding day you leave for the church 30.0...Ch. 2 - The position-versus-time plot of a boat...Ch. 2 - The position of a particle as a function of time...Ch. 2 - The position of a particle as a function of time...Ch. 2 - Predict/Explain On two occasions you accelerate...Ch. 2 - A 747 airliner reaches its takeoff speed of156...Ch. 2 - At the starting gun, a runner accelerates at1.9...Ch. 2 - A jet makes a landing traveling due east with a...Ch. 2 - A car is traveling due north at 23.6 m/s. Find the...Ch. 2 - A motorcycle moves according to the...Ch. 2 - A person on horseback moves according to the...Ch. 2 - Running with an initial velocity of +9.2 m/s, a...Ch. 2 - Predict/Calculate Assume that the brakes in your...Ch. 2 - As a train accelerates away from a station, it...Ch. 2 - A particle has an acceleration of +6.24 m/s2 for...Ch. 2 - Landing with a speed of 71.4 m/s, and traveling...Ch. 2 - When you see a traffic light turn red, you apply...Ch. 2 - A ball is released at the point x = 2 m on an...Ch. 2 - Starting from rest, a boat increases its speed to...Ch. 2 - The position of a car as a function of time is...Ch. 2 - The position of a ball as a function of time is...Ch. 2 - BIO A cheetah can accelerate from rest to 25 0 m/s...Ch. 2 - A sled slides from rest down an icy slope....Ch. 2 - A child slides down a hill on a toboggan with an...Ch. 2 - The Detonator On a ride called the Detonator at...Ch. 2 - Jules Verne In his novel From the Earth to the...Ch. 2 - BIO Bacterial Motion Approximately 0.1% of the...Ch. 2 - Two cars drive on a straight highway. At time t =...Ch. 2 - A Meteorite Strikes On October 9, 1992, a 27-pound...Ch. 2 - A rocket blasts off and moves straight upward from...Ch. 2 - Predict/Calculate You are driving through town at...Ch. 2 - Predict/Calculate You are driving through town at...Ch. 2 - BIO Predict/Calculate A Tongues Acceleration When...Ch. 2 - BIO Surviving a Large Deceleration On July 13,...Ch. 2 - A boat is cruising in a straight line at a...Ch. 2 - A model rocket rises with constant acceleration to...Ch. 2 - The infamous chicken is dashing toward home plate...Ch. 2 - A bicyclist is finishing his repair of a flat tire...Ch. 2 - A car in stop-and-go traffic starts at rest, moves...Ch. 2 - A car and a truck are heading directly toward one...Ch. 2 - Suppose you use videos to analyze the motion of...Ch. 2 - At the edge of a roof you throw ball 1 upward with...Ch. 2 - A cliff diver drops from rest to the water below....Ch. 2 - For a flourish at the end of her act, a juggler...Ch. 2 - Soaring Shaun During the 2014 Olympic games,...Ch. 2 - BIO Gulls are often observed dropping clams and...Ch. 2 - A volcano launches a lava bomb straight upward...Ch. 2 - An Extraterrestrial Volcano The first active...Ch. 2 - BIO Measure Your Reaction Time Heres something you...Ch. 2 - Predict/Explain A carpenter on the roof of a...Ch. 2 - Predict/Explain Figure 2-40 shows a v-versus-t...Ch. 2 - A ball is thrown straight upward with an initial...Ch. 2 - On a hot summer day in the state of Washington...Ch. 2 - Highest Water Fountain The USAs highest fountain...Ch. 2 - Wrongly called for a foul, an angry basketball...Ch. 2 - To celebrate a victory, a pitcher throws her glove...Ch. 2 - Predict/Calculate Standing at the edge of a cliff...Ch. 2 - You shoot an arrow into the air. Two seconds later...Ch. 2 - While riding on an elevator descending with a...Ch. 2 - A hot-air balloon is descending at a rate of 2.3...Ch. 2 - A model rocket blasts off and moves upward with an...Ch. 2 - BIO The southern flying squirrel (Glaucomys...Ch. 2 - Hitting the High Striker A young woman at a...Ch. 2 - While sitting on a tree branch 10.0 m above the...Ch. 2 - An astronaut on the Moon drops a rock straight...Ch. 2 - Taipei 101 An elevator in the Taipei 101...Ch. 2 - A Supersonic Waterfall Geologists have learned of...Ch. 2 - A juggler throws a ball straight up into the air....Ch. 2 - CE At the edge of a roof you drop ball A from...Ch. 2 - CE Two balls start their motion at the same time,...Ch. 2 - CE Refer to the position-versus-time plot in...Ch. 2 - Drop Tower NASA operates a 2.2-second drop tower...Ch. 2 - The velocity-versus-time graph for an object...Ch. 2 - At the 13th green of the U.S. Open you need to...Ch. 2 - A glaucous-winged gull, ascending straight upward...Ch. 2 - A doctor, preparing to give a patient an...Ch. 2 - A hot-air balloon has just lifted off and is...Ch. 2 - Astronauts on a distant planet throw a rock...Ch. 2 - BIO A Jet-Propelled Squid Squids can move through...Ch. 2 - A ball, dropped from rest, covers three-quarters...Ch. 2 - You drop a ski glove from a height h onto fresh...Ch. 2 - To find the height of an overhead power line, you...Ch. 2 - Sitting in a second-story apartment, a physicist...Ch. 2 - Bam!Apollo 15 Lands on the Moon The first word...Ch. 2 - Bam!Apollo 15 Lands on the Moon The first word...Ch. 2 - Bam!Apollo 15 Lands on the Moon The first word...Ch. 2 - Bam!Apollo 15 Lands on the Moon The first word...Ch. 2 - Referring to Example 2-17 Suppose the speeder (red...Ch. 2 - Referring to Example 2-17 The speeder passes the...Ch. 2 - Predict/Calculate Referring to Example 2-21 (a) In...Ch. 2 - Referring to Example 2-21 Suppose the balloon is...
Additional Science Textbook Solutions
Find more solutions based on key concepts
How do food chains and food webs differ? Which is the more accurate representation of feeding relationships in ...
Biology: Life on Earth (11th Edition)
What is the anatomical position? Why is it important that you learn this position?
Anatomy & Physiology (6th Edition)
Based on your answers to Questions 2 and 3, which part of the Atlantic basin appears to have opened first?
Applications and Investigations in Earth Science (9th Edition)
The pHactivity profile for glucose-6-phosphate isomerase indicates the participation of a group with a pKa = 6....
Organic Chemistry (8th Edition)
Two culture media were inoculated with four different bacteria. After incubation, the following results were ob...
Microbiology: An Introduction
MAKE CONNECTIONS In Concept 20.2, you learned about genome-wide association studies. Explain how these studies...
Campbell Biology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The position of a particle moving along the x axis varies in time according to the expression x = 3t2, where x is in meters and t is in seconds. Evaluate its position (a) at t = 3.00 s and (b) at 3.00 s + t. (c) Evaluate the limit of x/t as t approaches zero to find the velocity at t = 3.00 s.arrow_forwardOne drop of oil falls straight down onto the road from the engine of a moving car every 5 s. Figure OQ2.1 shows the pattern of the drops left behind on the pavement. What is the average speed of the car over this section of its motion? (a) 20 m/s (b) 24 m/s (c) 30 m/s (d) 100 m/s (e) 120 m/s Figure OQ2.1arrow_forwardAn object moves along the x axis according to the equation x = 3.00t2 2.00t + 3.00, where x is in meters and t is in seconds. Determine (a) the average speed between t = 2.00 s and t = 3.00 s, (b) the instantaneous speed at t = 2.00 s and at t = 3.00 s, (c) the average acceleration between t = 2.00 s and t = 3.00 s, and (d) the instantaneous acceleration at t = 2.00 s and t = 3.00 s. (e) At what time is the object at rest?arrow_forward
- The position of a particle as it moves along a y axis is given by y=(2.0 cm) sin (pt/4), with t in seconds and y in centimeters. (a) What is the average velocity of the particle between t = 0 and t = 2.0 s? (b) What is the instantaneous velocity of the particle at t= 0, 1.0, and 2.0 s? (c) What is the average acceleration of the particle between t = 0 and t = 2.0 s? (d) What is the instantaneous acceleration of the particle at t = 0, 1.0, and 2.0 s?arrow_forwardAn object is thrown upward at time t=0. After t seconds, its height is y=−4.9t 2 +2t+4.5 meters above the ground. (a) From what height was the object thrown? meters (b) What is the initial velocity of the object? m/s (c) What is the acceleration due to gravity? m/sarrow_forwardAn object has an acceleration as a function of time given by (in m/s2): a = (7t2 + 2t) i + (5t3 + 8) j Given: at t=0.0 s, the object is at the origin with a velocity of 0.0 m/s. What is the magnitude of its position (in m) when t= 6 s ?arrow_forward
- The equation y = 1/2 ay t2 + v0y t + y0 (where the position coefficient of y represents the verticle motion of an object), respresents the position of an object that is undergoing a constant acceleration. Why is the verticle acceleration, ay , given by ay = 2A. (A is the coefficient from the equation, y = Ax2 + Bx + C)arrow_forwardThe position of a particle moving along the x axis is given by x = (10 +5t -4.0t2)m, where t is in s. What is the average velocity (in m/s) during the time interval t= 1.0s to t =2.0sarrow_forwardAn object travels 146 m due east when it turns around and returns to its starting position. The entire trip takes 69.0 seconds. a) What is the magnitude of the displacement of the object? 73.0 m 146 m 292 m 0 m b) What is the magnitude of the average velocity of the object? 2.12 m/s 0 m/s 1.06 m/s 4.23 m/sarrow_forward
- The acceleration of a particle varies with time according to the equation a(t) = pt2 − qt3. Initially, the velocity and position are zero. (a) What is the velocity as a function of time? What is the position as a function of time? (b) What are the position and velocity for the times t = 0 and t = 2 s? (c) What are the average velocity and acceleration for the interval t = 0 to t = 2 s?arrow_forwardA particle’s velocity along the x-axis is described byv(t) = A t + B t2,where t is in seconds, v is in meters per second, A = 1.14 m/s2, and B = -0.56 m/s3. What is the acceleration, in meters per second squared, of the particle at time t0 = 1.0 s? What is the displacement, in meters, of the particle between times t0 = 1.0 s and t1 = 3.0 s? What is the distance traveled, in meters, by the particle between times t0 = 1.0 s and t1 = 3.0 s?arrow_forwardAn object has an acceleration as a function of time given by (in m/s2): A = (3t2 + 3t) i + (7t3 + 6) j Given: at t=0.0 s, the object is at the origin with a velocity of 0.0 m/s. What is the magnitude of its velocity (in m/s) when t= 4 s ?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY